Two-dimensional liquid-crystal elastomer (LCE) sheets with preprogrammed topological defects are prepared by aligning liquid-crystal monomers within micropatterned epoxy channels, followed by photopolymerization. Upon heating, the LCE films form various three-dimensional structures in agreement with theoretical design. The miniaturized LCE actuators offer large-area work capacities (≈1.05 J m ) to lift over 700 times their own weight.
Tunable culture platforms that guide cellular organization and mechanically stimulate skeletal muscle development are still unavailable due to limitations in biocompatibility and actuation triggered without contact. This study reports the rational design and fabrication of magneto-active microfiber meshes with controlled hexagonal microstructures via melt electrowriting (MEW) of a thermoplastic/graphene/iron oxide composite. In situ deposition of iron oxide nanoparticles on oxidized graphene yielded homogeneously dispersed magnetic particles with sizes above 0.5 micrometer and low aspect ratio, preventing cellular internalization and toxicity. With these fillers, homogeneous magnetic composites with very high magnetic filler content (up to 10 wt.%) were obtained and successfully processed in a solvent-free manner for the first time. MEW of magnetic composites enabled the skeletal muscle-inspired design of hexagonal scaffolds with tunable fiber diameter, reconfigurable modularity, and zonal distribution of magneto-active and nonactive material. Importantly, the hexagonal microstructures displayed elastic deformability under tension, mitigating the mechanical limitations due to high filler content. External magnetic fields below 300 mT were sufficient to trigger out-of-plane reversible deformation leading to effective end-to-end length decrease up to 17%. Moreover, C2C12 myoblast culture on 3D Matrigel/collagen/MEW scaffolds showed that the presence of magnetic particles in the scaffolds did not significantly affect viability after 8 days with respect to scaffolds without magnetic filler. Importantly, in vitro culture demonstrated that myoblasts underwent differentiation at similar rates regardless of the presence of magnetic filler. Overall, these innovative microfiber scaffolds were proven as a magnetically deformable platform suitable for dynamic culture of skeletal muscle with potential for in vitro disease modeling.
Despite extensive research, current methods for creating three-dimensional (3D) silk fibroin (SF) scaffolds lack control over molecular rearrangement, particularly in the formation of β-sheet nanocrystals, as well as hierarchical fiber organization at both micro- and macroscale. In this study, we introduce a fabrication process based on electrowriting of aqueous SF-based solutions followed by post-processing using an aqueous solution of sodium dihydrogen phosphate (NaH2PO4). This approach enables hierarchical assembly of SF chains via β-sheet and α-helix formation. Moreover, this process allows for precise control over micro- and macro-architectures in microfiber scaffolds, enabling the creation of 3D flat and tubular macrogeometries with square-based and crosshatch microarchitectures, featuring inter-fiber distances of 400 μm and approximately 97% open porosity. Remarkably, the printed structures demonstrated restored β-sheet and α-helix structures, which imparted an elastic response of up to 20% deformation and the ability to support cyclic loading without plastic deformation. Furthermore, the printed constructs supported in vitro adherence and growth of human conditionally immortalized proximal tubular epithelial cells and glomerular endothelial cells, with cell viability above 95%. These cells formed uniform, aligned monolayers that deposited their own extracellular matrix. These findings represent a significant development in fabricating organized SF scaffolds with unique fiber structures, mechanical and biological properties, making them highly promising for regenerative medicine applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.