Resumen. El calentamiento global o cambio climático es probablemente el mayor reto científico actual de la humanidad. De todos los factores tanto naturales como antropogénicos involucrados en el calentamiento global, así como sus complejas interrelaciones, poca atención se ha centrado en los factores externos al sistema Tierra, como lo es la variabilidad solar. En este trabajo se presenta un sistema híbrido de inteligencia artificial basado en redes neuronales artificiales y descomposición modal empírica para determinar la interrelación entre la irradiancia solar total recibida en la Tierra en lasúltimas cuatro décadas con uníndice clave en el cambio climático: la temperatura superficial del mar. Los resultados hasta el momento muestran una evidente interrelación entre ambosíndices, sugiriendo que el principal motor de la variabilidad en la temperatura superficial del mar son las variaciones en la entrada de energía solar al sistema Tierra.Palabras clave: Redes neuronales artificiales, descomposición modal empírica, cambio climático, calentamiento global, irradiancia solar, inteligencia artificial, reconocimiento de patrones, temperatura superficial del mar, IA, RNA, DME.
Palabras clave: análisis de datos, predicción y clasificación, aprendizaje de máquinas, red neuronal artificial convolucional, analisis de componentes principales, ACP, RNA, inteligencia artificial, reconocimiento de patrones, clasificación de galaxias, morfología de galaxias.Abstract. The study of the formation and evolution of galaxies requires the measurement of their morphological parameters. Traditionally, 295 morphological analyses have been performed through the extraction and selection of features, or through visual inspection by experts in a highburden process which is almost impossible to perform in massive image collections. Although there have been several attempts to build automated classification systems, these do not possess the required precision level. In this work we developed a convolutional artificial neural network and trained it with the massive database of the Galaxy Zoo project. This neural network can be applied to the automatic classification of images of galaxies according to their morphology. To increase the precision in the classification of the neural network, the training images are preprocessed using a principal component analysis approach. By reducing the work burden of experts and by not depending on the inexpert manual interpretation of images, this scope could be fundamental for the analysis and classification of images coming from even wider surveys which are currently under development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.