Alloy ribbons of nominal composition MnNiGe1.05 were produced using the melt-spinning technique. As-quenched (aq) polycrystalline ribbons are single-phase showing the hexagonal Ni2In-type crystal structure. After thermal annealing at 1148 K, the formation of the orthorhombic TiNiSi-type crystal structure by martensitic transformation is favored. However, XRD patterns for different temperatures indicate that the phase transition from hexagonal to orthorhombic structure is incomplete. The starting and finishing temperatures for the direct and reverse martensitic transformation for aq (annealed) samples determined by DSC were MS = 264 (268) K Mf = 235 (255) K, AS = 259 (266) K, and Af = 289 (276) K. Across this structural phase transition the annealed sample undergoes a drop in magnetization giving rise to a narrow temperature dependence of the magnetic entropy change with a peak value on heating (cooling) of 5.8 (4.8) Jkg−1K−1 for a field change of 5 T.
We present a cost-effective and robust set-up designed to measure directly the magnetic field-induced adiabatic temperature change. The system uses a piston to introduce/remove the sample to/from the magnetic field (μ0∆His up to 1.7T) created by an ordinary electromagnet. The temperature of the sample is controlled by a double pipe heat exchanger operating by the electrical heater and air flow circulation from a Dewar with liquid nitrogen to the sample holder assembly.We have measured the adiabatic temperature change, ΔTad, of two polycrystalline samples: Gd and Ni50Mn35In15Heusler alloy. At the second-order magnetic phase transitions (18oC for Gd and 42oC for Ni50Mn35In15), ΔTadunder μ0∆H=1.7T are 3.8±0.1oC for Gd and 1.9±0.1oC for Ni50Mn35In15. The Heusler alloy shows an inverse magnetocaloric effect: ΔTadis-1.5±0.1oC on cooling and-1.6±0.1oC on heating at the martensitic transformation temperatures of ~24oC and ~29oC, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.