This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated. We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be solved.
Assessing the viability of a blastosyst is still empirical and non-reproducible nowadays. We developed an algorithm based on artificial vision and machine learning (and other classifiers) that predicts pregnancy using the beta human chorionic gonadotropin (b-hCG) test from both the morphology of an embryo and the age of the patients. We employed two high-quality databases with known pregnancy outcomes (n = 221). We created a system consisting of different classifiers that is feed with novel morphometric features extracted from the digital micrographs, along with other non-morphometric data to predict pregnancy. It was evaluated using five different classifiers: probabilistic bayesian, Support Vector Machines (SVM), deep neural network, decision tree, and Random Forest (RF), using a k-fold cross validation to assess the model's generalization capabilities. In the database A, the SVM classifier achieved an F1 score of 0.74, and AUC of 0.77. In the database B the RF classifier obtained a F1 score of 0.71, and AUC of 0.75. Our results suggest that the system is able to predict a positive pregnancy test from a single digital image, offering a novel approach with the advantages of using a small database, being highly adaptable to different laboratory settings, and easy integration into clinical practice.
Genomic signal processing (GSP) refers to the use of signal processing for the analysis of genomic data. GSP methods require the transformation or mapping of the genomic data to a numeric representation. To date, several DNA numeric representations (DNR) have been proposed; however, it is not clear what the properties of each DNR are and how the selection of one will affect the results when using a signal processing technique to analyze them. In this paper, we present an experimental study of the characteristics of nine of the most frequently-used DNR. The objective of this paper is to evaluate the behavior of each representation when used to measure the similarity of a given pair of DNA sequences.
Intravascular ultrasound (IVUS) is a catheter-based medical imaging technique that produces cross-sectional images of blood vessels and is particularly useful for studying atherosclerosis. In this paper, we present a computational method for the delineation of the luminal border in IVUS B-mode images. The method is based in the minimization of a probabilistic cost function (that deforms a parametric curve) which defines a probability field that is regularized with respect to the given likelihoods of the pixels belonging to blood and non-blood. These likelihoods are obtained by a Support Vector Machine classifier trained using samples of the lumen and non-lumen regions provided by the user in the first frame of the sequence to be segmented. In addition, an optimization strategy is introduced in which the direction of the steepest descent and Broyden-Fletcher-Goldfarb-Shanno optimization methods are linearly combined to improve convergence. Our proposed method (MRK) is capable of segmenting IVUS B-mode images from different systems and transducer frequencies without the need of any parameter tuning, and it is robust with respect to changes of the B-mode reconstruction parameters which are subjectively adjusted by the interventionist. We validated the proposed method on six 20 MHz and six 40 MHz IVUS stationary sequences corresponding to regions with different degrees of stenosis, and evaluated its performance by comparing the * Corresponding author segmentation results with manual segmentation by two observers. Furthermore, we compared our method with the segmentation results on the same sequences as provided by the authors of three other segmentation methods available in the literature. The performance of all methods was quantified using Dice and Jaccard similarity indexes, Hausdorff distance, linear regression and Bland-Altman analysis. The results indicate the advantages of our method for the segmentation of the lumen contour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.