We validated doubly-labelled water (DLW) by comparison to indirect calorimetry and food intake±mass balance in eight Labrador dogs (24±32 kg) over 4 d. We used several alternative equations for calculating CO 2 production, based on the single-and two-pool models and used two alternative methods for evaluating the elimination constants: two-sample and multiplesampling. In all cases the DLW technique overestimated the direct estimate of CO 2 production. The greatest overestimates occurred with the single-pool model. Using two samples, rather than multiple samples, to derive the elimination constants produced slightly more discrepant results. Discrepancies greatly exceeded the measured analytical precision of the DLW estimates. The higher values with DLW probably occurred because the dogs were extremely active during the 1 h in each 24 spent outside the chamber. Estimates of CO 2 production from food intake±mass balance, which include this activity, produced a much closer comparison to DLW (lowest mean discrepancy 0´3 % using the observed group mean dilution space ratio and an assumption that the mass changes reflected changes in hydration for all except one animal). We recommend an equilibration time of 6 h and use of the two-pool model based on the observed population dilution space for future studies of energy demands in dogs of this body mass.Energy expenditure: Calorimetry: Doubly-labelled water: Dogs
The technique described in this report appears to provide sensitive, reliable, and relevant data and will enable further studies of the factors that influence flatulence in dogs. Use of this technique also has the potential to aid in investigations of colonic physiology and pathology.
The skin is the first barrier the body has to protect itself from the environment. There are several bacteria that populate the skin, and their composition may change throughout the dog’s life due to several factors, such as environmental changes and diseases. The objective of this research was to determine the skin microbiome changes due to a change in diet on healthy pet dogs. Healthy client-owned dogs (8) were fed a fresh diet for 30 days then dry foods for another 30 days after a 4-day transition period. Skin bacterial population samples were collected after each 30-day feeding period and compared to determine microbiome diversity. Alpha diversity was higher when dogs were fed the fresh diet compared to the dry foods. Additionally, feeding fresh food to dogs increased the proportion of Staphylococcus and decreased Porphyromonas and Corynebacterium. In conclusion, changing from fresh diet to dry foods promoted a relative decrease in skin microbiome in healthy pet dogs.
BackgroundA higher prevalence of inherited disorders among companion animals are often rooted in their historical restricted artificial selection for a variety of observed phenotypes that eventually decreased genetic diversity. Cats have been afflicted with many inherited diseases due to domestication and intense breed selection. Advances in sequencing technology have generated a more comprehensive way to access genetic information from an individual, allowing identification of putative disease-causing variants and in practice a means to avoid their spread and thus better pedigree management. We examine variants in three domestic shorthair cats and then calculated overall genetic diversity to extrapolate the benefits of this data for breeding programs within a feline colony.ResultsWe generated whole genome sequence (WGS) data for three related cats that belong to a large feline pedigree colony. Genome-wide coverage ranged from 27-32X, from which we identified 18 million variants in total. Previously known disease-causing variants were screened in our cats, but none carry any of these known disease alleles. Loss of function (LoF) variants, that are in genes associated with a detrimental phenotype in human or mice were chosen for further evaluation on the comparative impact inferred. A set of LoF variants were observed in four genes, each with predicted detrimental phenotypes as a result. However, none of our cats displayed the expected disease phenotypes. Inbreeding coefficients and runs of homozygosity were also evaluated as a measure of genetic diversity. We find low inbreeding coefficients and total runs of homozygosity, thus suggesting pedigree management of genetic relatedness is acceptable.ConclusionsThe use of WGS of a small sampling among a large feline colony has enabled us to identify possible disease-causing variants, their genotype state and measure pedigree management of genetic diversity. We contend a limited but strategic sampling of feline colony individuals using WGS can inform veterinarians of future health anomalies and guide breeding practices to ensure healthy genetic diversity.Electronic supplementary materialThe online version of this article (doi:10.1186/s12917-017-1144-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.