High concentrations of thrombin (Thr) have been linked to neuronal damage in cerebral ischemia and traumatic brain injury. In the present study we found that Thr markedly enhanced swelling-activated efflux of (3)H-glutamate from cultured astrocytes exposed to hyposmotic medium. Thr (0.5-5 U/mL) elicited small (3)H-glutamate efflux under isosmotic conditions and increased the hyposmotic glutamate efflux by 5- to 10-fold, the maximum effect being observed at 15% osmolarity reduction. These Thr effects involve its protease activity and are fully mimicked by SFFLRN, the synthetic peptide activating protease-activated receptor-1. Thr potentiation of (3)H-glutamate efflux was largely dependent on a Thr-elicited increases in cytosolic Ca(2+) (Ca(2+) (i)) concentration ([Ca(2+)](i)). Preventing Ca(2+) (i) rise by treatment with EGTA-AM or with the phospholipase C blocker U73122 reduced the Thr-increased glutamate efflux by 68%. The protein kinase C blockers Go6976 or chelerythrine reduced the Thr effect by 19%-22%, while Ca/calmodulin blocker W7 caused a 63% inhibition. In addition to this Ca(2+)-sensitive pathway, Thr effect on glutamate efflux also involved activation of phosphoinositide-3 kinase (PI3K), since it was reduced by the PI3K inhibitor wortmannin (51% inhibition). Treating cells with EGTA-AM plus wortmannin essentially abolished Thr-dependent glutamate efflux. Thr-activated glutamate release was potently inhibited by the blockers of the volume-sensitive anion permeability pathway, NPPB (IC(50) 15.8 microM), DCPIB (IC(50) 4.2 microM), and tamoxifen (IC(50) 6.6 microM. These results suggest that Thr may contribute to the excitotoxic neuronal injury by elevating extracellular glutamate release from glial cells. Therefore, this work may aid in search of neuroprotective strategies for treating cerebral ischemia and brain trauma.
This study reports an effect of taurine (1-10 mM) increasing markedly (120%) the number of neural precursor cells (NPCs) from adult mouse subventricular zone, cultured as neurospheres. This effect is one of the highest reported for adult neural precursor cells. Taurine-containing cultures showed 73-120% more cells than controls, after 24 and 96 h in culture, respectively. Taurine effect is due to enhanced proliferation as assessed by BrdU incorporation assays. In taurine cultures BrdU incorporation was markedly higher than controls from 1.5 to 48 h, with the maximal difference found at 1.5 h. This effect of taurine reproduced at every passage with the same window time. Taurine effects are not mimicked by glycine, alanine or GABA. Clonal efficiency values of 3.6% for taurine cultures and 1.3% for control cultures suggest a taurine influence on both, progenitor and stem cells. Upon differentiation, the proportion of neurons in control and taurine cultures was 3.1% (±0.5) and 10.2% (±0.8), respectively. These results are relevant for taurine implication in brain development as well as in adult neurogenesis. Possible mechanisms underlying taurine effects on cell proliferation are discussed.
Human cell lines, first cultured in the 1950s 1 , are indispensable in biomedical research. Today, a wide range of cell types are available, and sophisticated advanced 'omics' and visualization techniques allow for the routine assessment of cell identity and cellular responses 2 . However, the culture methods have remained relatively unchanged. Major advances in culture systems were made over three decades ago 3,4 , yet the old standard approach of batch cell culturethe culture of cells either in suspension or as adherent monolayers of cells in standard media [5][6][7] remains the predominant method in biomedical research.Culture media provides crucial nutrients, signalling molecules (such as growth factors), and suitable osmotic conditions. The gaseous and thermal environments of cell cultures are typically controlled by the incubator. The initial media conditions are generally stabilized by adjusting them to 18.6% O2 and a standard pH of 7.4, and this adjustment is achieved by adding a given amount of HCO3 − salt (a base), and by enriching the media with CO2 to a given percentage in the air (usually 5% or 10%). However, cell metabolism involves the exchange of gasesspecifically the release of CO2 and the consumption of O2and this can affect cellular growth via the alteration of, for example, the pH and the level of dissolved O2 (dO2) in the cellular microenvironment 8 . In theory, the equilibration of the medium with the gaseous and thermal environments of the incubator provides a way to reliably mimic O2, CO2 and HCO3 − homeostasis in metazoan body fluids. Yet this doesn't take into account the fact that homeostasis in a living mammal is supported by the active exchange of gases with the atmosphere. The absence of such active gas exchange in cell cultures suggests that, over time, cellular metabolic activities might acidify and deoxygenate the cellular microenvironment 8-10 , if intermittent monitoring and (when necessary) corrective action are not carried out.To mimic a physiological environment when using cell cultures, careful control over environmental factors (such as pH, CO2 and O2) is typically needed, in particular because even small deviations of environmental parameters from physiological levels may impair cellular function. For instance, in human blood, pH values below 7.2 (acidaemic conditions) and above 7.44 (alkalaemic conditions) can be fatal [11][12][13] . In cell cultures, the optimal growth of normal cells (that is, non-cancerous cells and non-transformed cells) occurs within a specific alkaline pH range, whereas cancer cells grow in a broader pH range that is shifted towards acidic values [14][15][16][17][18] . Cells have evolved mechanisms, including the use of Na + /H + antiporters or histone deacetylation, that restore the alkaline pH of the cytoplasm when the extracellular pH deviates from physiological levels [19][20][21][22][23][24][25] . However, such regulatory mechanisms require cellular energy, and changes in the acetylation state of chromatin can alter gene transcription and reduc...
Taurine is present in high levels in fetal brain which decrease in the adult, suggesting its role in brain development. In some regions of taurine deficient animals cells show defective migration and the presence of numerous mitotic figures, suggesting a delay in cell proliferation. To know more about the role of taurine in the developing brain cells, the present study investigated whether taurine is a factor involved in proliferation or/and viability of neural progenitor cells (NPC). NPC were obtained from 13.5-days mice embryos mesencephalon, and cultured during 4-5 days to form neurospheres in the presence of EGF plus FGFb (EGF/FGF) or EGF alone. Mesencephalon taurine content (349 mmoles/kg protein) was lost in NPC and recovered after addition of 10 mM taurine to the culture. Neurospheres-forming NPC were over 94% nestin-positive. Taurine increased 38.6% and 43.2% the number of NPC formed in EGF/FGF or EGF conditions, respectively. In secondary neurospheres this increase was 24.6% and 62.1%, in EGF/FGF or EGF cultures respectively. Correspondingly neurospheres size was increased by taurine but neurospheres number was not enhanced. Taurine significantly increased the number of BrdU-positive cells, without affecting cell viability, suggesting proliferation as the mechanism responsible for taurine action increasing NPC. Taurine seems unable to increase the number of beta-III-tubulin-positive cells differentiated from neurospheres after serum addition, and rather an increase in astrocytes was observed. These results point to taurine as a trophic factor contributing to optimize NPC proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.