Brown adipocytes can differentiate from white fat progenitor cells in mice exposed to cold or β3-adrenergic stimulation, and this process is regulated by a microRNA that regulates the expression of Hoxc8, a master regulator of brown adipogenesis.
Single-dose del Nido cardioplegia is an effective and economic cardioplegia and can be used with good outcomes in coronary surgery. Most patients have spontaneous return of sinus rhythm and there is a trend towards decreased transfusion rate.
Mutations in the protein alpha-synuclein (SNCA) have been linked to Parkinson’s disease. We recently reported that non-mutated SNCA enhanced glucose uptake through the Gab1-PI3 kinase-Akt pathway and elucidated its effects on glucose regulation. Here, we examined the association of SNCA with insulin resistance (IR), a condition that is characterized by decreased tissue glucose uptake. Our observations include those from a population study as well as a SNCA-deficient mouse model, which had not previously been characterized in an IR scenario. In 1,152 patients, we found that serum SNCA levels were inversely correlated with IR indicators—body mass index, homeostatic model assessment for IR (HOMA-IR) and immunoreactive insulin (IRI)—and, to a lesser extent, with blood pressure and age. Additionally, SNCA-deficient mice displayed alterations in glucose and insulin responses during diet-induced IR. Moreover, during euglycemic clamp assessments, SNCA knock-out mice fed a high-fat diet (HFD) showed severe IR in adipose tissues and skeletal muscle. These findings provide new insights into IR and diabetes and point to SNCA as a potential candidate for further research.
Insulin is the main glucoregulator that promotes the uptake of glucose by tissues and the subsequent utilization of glucose as an energy source. In this paper, we describe a novel glucoregulator, the alpha-synuclein (SNCA) protein, that has previously been linked to Parkinson's disease. Treatment with recombinant SNCA promotes glucose uptake in vitro in preadipocytes and in vivo in the adipose tissues and skeletal muscles of mice through the LPAR2/Gab1/PI3K/Akt pathway; these effects occur independently of the insulin receptor. This function of SNCA represents a new mechanistic insight that creates novel avenues of research with respect to the process of glucose regulation.
Diabetes mellitus elicits cellular, epigenetic, and post-translational changes that directly or indirectly affect the biology of the vasculature and other metabolic systems resulting in the apparition of cardiovascular disease. In this review, we provide a current perspective on the most recent discoveries in this field, with particular focus on hyperglycemia-induced pathology in the cardiovascular system. We also provide perspective on the clinical importance of molecular targeting of cardiovascular and diabetes mellitus therapies to treat hyperglycemia, inflammation, thrombosis, dyslipidemia, atherosclerosis, and hypertension. Cardiovasc Endocrinol Metab 7:4-9
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.