Triggered seismicity in karst regions has been explained assuming the existence of a hydraulically connected fracture system and downward diffusion of surface pore pressures. Karst systems are, in fact, able to swiftly channel large amount of rainfall through networks of conduits increasing the hydraulic head loading upon the fluid‐saturated, poroelastic crust. Here we use Global Positioning System and hydrological and seismicity data to show that poroelastic strain in the shallow crust (0–3.5 km) controls seasonal and multiannual modulation of seismicity along the Irpinia Fault Zone (Southern Italy) without requiring a hydraulically connected fracture system from the surface to hypocentral depths. We suggest that groundwater recharge of karst aquifers along the Irpinia Fault Zone produces stress perturbations large enough to modulate strain accumulation and seismicity and temporarily modify the probability of nucleation of seismic events such as the 1980 Irpinia, MS 6.9, earthquake.
We present GPS, hydrological, and GRACE (Gravity Recovery and Climate Experiment) observations in southern Apennines (Italy) pointing to a previously unnoticed response of the solid Earth to hydrological processes. Transient patterns in GPS horizontal time series near to large karst aquifers are controlled by seasonal and interannual phases of groundwater recharge/discharge of karst aquifers, modulating the extensional ∼3 mm/yr strain within the tectonically active Apennines. We suggest that transient signals are produced, below the saturation level of the aquifers and above a poorly constrained depth in the shallow crust, by time‐dependent opening of subvertical, fluid‐filled, conductive fractures. We ascribe this process to the immature karstification and intense tectonic fracturing, favoring slow groundwater circulation, and to multiyear variations of the water table elevation, influenced by variable seasonal recharge. The vertical component displays seasonal and multiyear signals more homogeneously distributed in space and closely correlated with estimates of total water storage from GRACE, reflecting the elastic response of the lithosphere to variations of surface water loads. The different sensitivities of vertical and horizontal components to the hydrologically induced deformation processes allow us to spatially and temporally resolve the different phases of the water cycle, from maximum hydrological loading at the surface to maximum hydrostatic pressure beneath karst aquifers. Finally, we suggest that transient deformation signals in the geodetic series of the Apennines are correlated to large‐scale climatic patterns (Northern Atlantic Oscillation) through their influence on precipitation variability and trends at the regional scale.
The recharge processes have been evaluated for two karst massifs of southern Italy, the Mt Terminio and Mt Cervialto, characterized by wide endorheic areas. The annual mean recharge has been estimated by Geographic Information System (GIS) tools, from regression of annual mean values of different ground-elevated rain gauges and thermometers. The recharge has been distinguished for endorheic areas and the other areas of spring catchment, and the ratio between the output spring and input rainfall has been also estimated (recharge coefficient). The annual recharge has been used to calibrate a daily scale model, which allows to estimate the amount of effective rainfall, which is retained as soil moisture; the amount reaching the water table (recharge s.s.); and the amount of rainfall, which develops the runoff and leaves the catchment. All these amounts vary through the hydrological year, in function of soil moisture deficit and daily rainfall intensity. The model allows estimating the recharge conditions through the hydrological year, and it is a useful tool for water management.
We analyzed hydrographs of five karst springs in southern Italy during the recession period using ten continuous years of daily discharge measurements and provided conclusions on the aquifer behavior under dry periods and droughts. A straight line was fitted to a semilogarithmic plot (log-discharge versus time), and the recession coefficient (the slope of the line generated from the equation) was calculated for each spring and for each year considered. A deviation from the straight line produced by a simple exponential decay of discharge through time provides information on the actual emptying rate of the aquifer compared to a simple exponential decline. If the recession coefficient decreases or increases, the aquifer is empting more slowly or more quickly than expected, respectively. Water level of a monitored well inside the karst catchment was also assessed and provided information on the water distribution into aquifers. The results describe the hydraulic behavior of karst aquifers during their emptying and provide information for better management of karst springs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.