We consider the dual BBGKY hierarchy for quasiobservables of manyparticle systems as a basis of nonequilibrium statistical mechanics and give a complete description of the evolution of quasiobservables.
We review some new approaches to the description of the evolution of states of many-particle quantum systems by means of the correlation operators. Using the denition of marginal correlation operators within the framework of dynamics of correlations governed by the von Neumann hierarchy, we establish that a sequence of such operators is governed by the nonlinear quantum BBGKY hierarchy. The constructed nonperturbative solution of the Cauchy problem to this hierarchy of nonlinear evolution equations describes the processes of the creation and the propagation of correlations in many-particle quantum systems. Moreover, we consider the problem of the rigorous description of collective behavior of many-particle quantum systems by means of a one-particle (marginal) correlation operator that is a solution of the generalized quantum kinetic equation with initial correlations, in particular, correlations characterizing the condensed states of systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.