Santorini Island, located in the Southern Aegean Sea, is prone to tsunamis due to its proximity to the Hellenic subduction zone, which is one of the major tsunamigenic areas. Characteristic events, such as those of 365 A.D. and 1303 A.D. greatly affected the coasts of the Eastern Mediterranean Sea, causing significant loss of life and construction damage. Tsunami disaster risk is nowadays significantly higher due to the increased exposure of the buildings as a result of the economic and touristic growth of the Aegean Islands. This study focuses on the eastern coast of Santorini, since its morphology and human presence amplify the necessity to assess its building vulnerability. After conducting an exposure analysis at the settlements of the eastern coast, Kamari poses the highest physical, social and economic relative exposure to any potential natural hazard. The main objective of this research is to quantify the building stock’s vulnerability to tsunami hazard. For this purpose, a “worst-case run-up scenario” was developed. Considering the history of tsunamis in the Aegean Sea, an extreme sea-level rise after a 10 m a.s.l. tsunami run-up, caused by an earthquake with Mw~8.5, was assumed. The relative vulnerability of the buildings in Kamari was calculated via the application of the Papathoma Tsunami Vulnerability Assessment (PTVA-4) analytic model. The results indicate that 423 buildings are within the inundation zone, 58% of which are characterized as highly and very highly vulnerable to tsunamis, revealing the problematic characteristics of the building stock, offering important information to the decision-makers to mitigate a possible future tsunami impact.
Introduction:The city of Shizuoka directly faces the Nankai Trough (known for its tsunamigenic history), and is facing a potential tsunami threat. In this setting vertical evacuation can be of great significance in reducing loss of life.Methods:We apply a GIS based method in order to identify sites that could be utilized for vertical evacuation within the existing building stock of the city, under two tsunami scenarios of 5 and 10 meters of run-up. For each building, we estimate the volume that is expected to be lost per scenario, as well as the number of people inside and how that number fluctuates over different times of the day.Results:Using the criteria of 25% or less building volume loss and 6 cubic meters of volume per person, resulted in 2,046 potential sites for the 10 meter scenario and 1,643 potential sites for the 5 meter scenario, with the maximum amount of people that can potentially be accepted in these sites in the morning hours being 873,537 in the 10 meter scenario and 304,734 in the 5 meter scenario.Discussion:Our approach has shown that there is a temporal aspect in tsunami vertical evacuation due to the movement of the local population throughout the day. the proposed method can be used for preliminary identification of potential vertical evacuation sites, however, it must be followed by further vulnerability and engineering assessments of buildings, in combination with accessibility and evacuation routing in order to reach a viable and complete evacuation plan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.