Progressive accumulation of age related mitochondrial DNA mutations reduce ATP production and increase reactive oxygen species output, leading to oxidative stress, inflammation and degradation. The pace of this is linked to metabolic demand. The retina has the greatest metabolic demand and mitochondrial density in the body and displays progressive age related inflammation and marked cell loss. Near infra-red (670 nm) is thought to be absorbed by cytochrome c oxidase (COX), a key element in mitochondrial respiration and it has been demonstrated that it improves mitochondrial membrane potentials in aged eyes. It also significantly reduces the impact of experimental pathology and ameliorates age related retinal inflammation. We show ATP decline with ageing in mouse retina and brain. Also, in these tissues that ATP is significantly increased by 670 nm exposure in old mice. In the retina this was associated with increased COX and reduced acrolein expression. Acrolein, being a free radical marker of retinal oxidative stress, is up regulated in Alzheimer's and retinal degeneration. This is the first demonstration of ATP manipulation in vivo and may provide a simple non-invasive route to combating age related tissue decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.