This is a tutorial paper on the tool Uppaal. Its goal is to be a short introduction on the flavor of timed automata implemented in the tool, to present its interface, and to explain how to use the tool. The contribution of the paper is to provide reference examples and modeling patterns.
Abstract. This paper introduces the model of linearly priced timed automata as an extension of timed automata, with prices on both transitions and locations. For this model we consider the minimum-cost reachability problem: i.e. given a linearly priced timed automaton and a target state, determine the minimum cost of executions from the initial state to the target state. This problem generalizes the minimum-time reachability problem for ordinary timed automata. We prove decidability of this problem by offering an algorithmic solution, which is based on a combination of branch-and-bound techniques and a new notion of priced regions. The latter allows symbolic representation and manipulation of reachable states together with the cost of reaching them.
Abstract. In 2005 we proposed the first efficient on-the-fly algorithm for solving games based on timed game automata with respect to reachability and safety properties. The first prototype presented at that time has now matured to a fully integrated tool with dramatic improvements both in terms of performance and the availability of the extended input language of Uppaal-4.0. The new tool can output strategies or let the user play against them both from the command line and from the graphical simulator that was completely re-designed.
Abstract. Timed automata have an infinite semantics. For verification purposes, one usually uses zone based abstractions w.r.t. the maximal constants to which clocks of the timed automaton are compared. We show that by distinguishing maximal lower and upper bounds, significantly coarser abstractions can be obtained. We show soundness and completeness of the new abstractions w.r.t. reachability. We demonstrate how information about lower and upper bounds can be used to optimise the algorithm for bringing a difference bound matrix into normal form.Finally, we experimentally demonstrate that the new techniques dramatically increases the scalability of the real-time model checker Uppaal.
In this paper we present an algorithm for efficiently computing optimal cost of reaching a goal state in the model of Linearly Priced Timed Automata (LPTA). The central contribution of this paper is a priced extension of so-called zones. This, together with a notion of facets of a zone, allows the entire machinery for symbolic reachability for timed automata in terms of zones to be lifted to cost-optimal reachability using priced zones. We report on experiments with a cost-optimizing extension of Uppaal on a number of examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.