SummaryExpression in mammalian COS cells and an efficient microtiter-based strategy for immunoselectlon was used in a novel approach to identify genes encoding plant membrane proteins. COS cells were transfected with an Arabidopsis thaliana root cDNA library constructed in a bacterial mammalian shuffle vector and screened with an antiserum raised against purified deglycosylated integral plasma membrane proteins from A. thallana roots. Antibodies directed against a prominent 27 kDa antigen led to the identification of five different genes. They comprised two subfamilies related to the major intrinsic protein (MIP) superfamily and were named plasma membrane intrinsic proteins, PIP1 and PIP2, since the cellular localization of PIP1 and most probably PIP2 proteins in the plasma membrane was independently confirmed by their cosegregation with marker enzymes during aequeous two-phase partitioning. Surprisingly, expression in Xenopus laevis oocytes revealed that all five PIP mRNAs coded for Hg2+-sensitive water transport facilitating activities. There had been no previous evidence of the existence of water channels in the plasma membrane of plant cells and the high diffusional water permeability of the lipid bilayer was considered to be sufficient for water exchange. Neverthelese, Northern and Western analyses showed that the PIP genes are constitutively and possibly even redundantly expressed from the small A. thaliana genome.
Human tryptase, a tetrameric proteinase expressed by mast cells, is virtually unique among the serine proteinases as it is not inhibited by any proteinaceous inhibitor tested so far. We have now isolated, sequenced, and characterized an inhibitor of human tryptase from the medical leech Hirudo medicinalis. LDTI (Leech-Derived Tryptase Inhibitor) was purified to apparent homogeneity by cation exchange and affinity chromatography. Amino acid sequencing of the protein consisting of 46 residues (M(r) 4738) revealed a high degree of similarity to the non-classical Kazal-type inhibitors bdellin B-3 and rhodniin, inhibitors isolated from the medical leech and the insect Rhodnius prolixus, respectively. LDTI is a tight-binding and relatively specific inhibitor of human tryptase; it inhibits only trypsin (EC 3.4.21.4) and chymotrypsin (EC 3.4.21.1) with similar affinities. Inhibition studies using small chromogenic substrates revealed that LDTI inhibits the amidolytic activity of tryptase by approximately 50%, suggesting that most likely due to steric hindrance LDTI binds to and inhibits only 2 of 4 active sites of tryptase. LDTI appears useful as a prototype of inhibitors of human tryptase and as a pharmacological tool for the investigation of the role of tryptase in health and disease.
Tryptases, the predominant serine proteinases of human mast cells, have recently been implicated as mediators in the pathogenesis of allergic and inf lammatory conditions, most notably asthma. Their distinguishing features, their activity as a heparin-stabilized tetramer and resistance to most proteinaceous inhibitors, are perfectly explained by the 3-Å crystal structure of human II-tryptase in complex with 4-amidinophenylpyruvic acid. The tetramer consists of four quasiequivalent monomers arranged in a f lat frame-like structure. The active centers are directed toward a central pore whose narrow openings of approximately 40 Å ؋ 15 Å govern the interaction with macromolecular substrates and inhibitors. The tryptase monomer exhibits the overall fold of trypsin-like serine proteinases but differs considerably in the conformation of six surface loops arranged around the active site. These loops border and shape the active site cleft to a large extent and form all contacts with neighboring monomers via two distinct interfaces. The smaller of these interfaces, which is exclusively hydrophobic, can be stabilized by the binding of heparin chains to elongated patches of positively charged residues on adjacent monomers or, alternatively, by high salt concentrations in vitro. On tetramer dissociation, the monomers are likely to undergo transformation into a zymogen-like conformation that is favored and stabilized by intramonomer interactions. The structure thus provides an improved understanding of the unique properties of the biologically active tryptase tetramer in solution and will be an incentive for the rational design of mono-and multifunctional tryptase inhibitors.
The x-ray crystal structure of recombinant leech-derived tryptase inhibitor (rLDTI) has been solved to a resolution of 1.9 Å in complex with porcine trypsin. The nonclassical Kazal-type inhibitor exhibits the same overall architecture as that observed in solution and in rhodniin. The complex reveals structural aspects of the mast cell proteinase tryptase. The conformation of the binding region of rLDTI suggests that tryptase has a restricted active site cleft. The basic amino terminus of rLDTI, apparently flexible from previous NMR measurements, approaches the 148-loop of trypsin. This loop has an acidic equivalent in tryptase, suggesting that the basic amino terminus could make favorable electrostatic interactions with the tryptase molecule. A series of rLDTI variants constructed to probe this hypothesis confirmed that the amino-terminal Lys-Lys sequence plays a role in inhibition of human lung tryptase but not of trypsin or chymotrypsin. The location of such an acidic surface patch is in accordance with the known low molecular weight inhibitors of tryptase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.