Background
Mixed reality (MR), the computer-supported augmentation of a real environment with virtual elements, becomes ever more relevant in the medical domain, especially in urology, ranging from education and training over surgeries. We aimed to review existing MR technologies and their applications in urology.
Methods
A non-systematic review of current literature was performed using the PubMed-Medline database using the medical subject headings (MeSH) term “mixed reality”, combined with one of the following terms: “virtual reality”, “augmented reality”, ‘’urology’’ and “augmented virtuality”. The relevant studies were utilized.
Results
MR applications such as MR guided systems, immersive VR headsets, AR models, MR-simulated ureteroscopy and smart glasses have enormous potential in education, training and surgical interventions of urology. Medical students, urology residents and inexperienced urologists can gain experience thanks to MR technologies. MR applications are also used in patient education before interventions.
Conclusions
For surgical support, the achievable accuracy is often not sufficient. The main challenges are the non-rigid nature of the genitourinary organs, intraoperative data acquisition, online and multimodal registration and calibration of devices. However, the progress made in recent years is tremendous in all respects and the gap is constantly shrinking.
Virtual Reality (VR) technology offers users the possibility to immerse and freely navigate through virtual worlds. An important component for achieving a high degree of immersion in VR is locomotion. Often discussed in the literature, a natural and effective way of controlling locomotion is still a general problem which needs to be solved. Recently, VR headset manufacturers have been integrating more sensors, allowing hand or eye tracking without any additional required equipment. This enables a wide range of application scenarios with natural freehand interaction techniques where no additional hardware is required. This paper focuses on techniques to control teleportation-based locomotion with hand gestures, where users are able to move around in VR using their hands only. With the help of a comprehensive study involving 21 participants, four different techniques are evaluated. The effectiveness and efficiency as well as user preferences of the presented techniques are determined. Two two-handed and two one-handed techniques are evaluated, revealing that it is possible to move comfortable and effectively through virtual worlds with a single hand only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.