Abstract. Social bookmark tools are rapidly emerging on the Web. In such systems users are setting up lightweight conceptual structures called folksonomies. The reason for their immediate success is the fact that no specific skills are needed for participating. At the moment, however, the information retrieval support is limited. We present a formal model and a new search algorithm for folksonomies, called FolkRank, that exploits the structure of the folksonomy. The proposed algorithm is also applied to find communities within the folksonomy and is used to structure search results. All findings are demonstrated on a large scale dataset.
Abstract. Collaborative tagging systems allow users to assign keywords-so called "tags"-to resources. Tags are used for navigation, finding resources and serendipitous browsing and thus provide an immediate benefit for users. These systems usually include tag recommendation mechanisms easing the process of finding good tags for a resource, but also consolidating the tag vocabulary across users. In practice, however, only very basic recommendation strategies are applied.In this paper we evaluate and compare two recommendation algorithms on large-scale real life datasets: an adaptation of user-based collaborative filtering and a graph-based recommender built on top of FolkRank. We show that both provide better results than non-personalized baseline methods. Especially the graphbased recommender outperforms existing methods considerably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.