Optical property measurements on blood are influenced by a large variety of factors of both physical and methodological origin. The aim of this review is to list these factors of influence and to provide the reader with optical property spectra (250–2,500 nm) for whole blood that can be used in the practice of biomedical optics (tabulated in the appendix). Hereto, we perform a critical examination and selection of the available optical property spectra of blood in literature, from which we compile average spectra for the absorption coefficient (μa), scattering coefficient (μs) and scattering anisotropy (g). From this, we calculate the reduced scattering coefficient (μs′) and the effective attenuation coefficient (μeff). In the compilation of μa and μs, we incorporate the influences of absorption flattening and dependent scattering (i.e. spatial correlations between positions of red blood cells), respectively. For the influence of dependent scattering on μs, we present a novel, theoretically derived formula that can be used for practical rescaling of μs to other haematocrits. Since the measurement of the scattering properties of blood has been proven to be challenging, we apply an alternative, theoretical approach to calculate spectra for μs and g. Hereto, we combine Kramers–Kronig analysis with analytical scattering theory, extended with Percus–Yevick structure factors that take into account the effect of dependent scattering in whole blood. We argue that our calculated spectra may provide a better estimation for μs and g (and hence μs′ and μeff) than the compiled spectra from literature for wavelengths between 300 and 600 nm.
Hyperspectral imaging (HSI) integrates conventional imaging and spectroscopy, to obtain both spatial and spectral information from a specimen. This technique enables investigators to analyze the chemical composition of traces and simultaneously visualize their spatial distribution. HSI offers significant potential for the detection, visualization, identification and age estimation of forensic traces. The rapid, non-destructive and non-contact features of HSI mark its suitability as an analytical tool for forensic science. This paper provides an overview of the principles, instrumentation and analytical techniques involved in hyperspectral imaging. We describe recent advances in HSI technology motivating forensic science applications, e.g. the development of portable and fast image acquisition systems. Reported forensic science applications are reviewed. Challenges are addressed, such as the analysis of traces on backgrounds encountered in casework, concluded by a summary of possible future applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.