In conclusion, all four systems for preparation of platelet-rich plasma investigated result in considerable growth factor release. In what extent the total content of PDGF-AB as a consequence of platelet yield has an impact on wound healing has to be further investigated.
Apheresis with different procedures and devices are used for a variety of indications that may have different adverse events (AEs). The aim of this study was to clarify the extent and possible reasons of various side effects based on data from a multinational registry. The WAA-apheresis registry data focus on adverse events in a total of 50846 procedures in 7142 patients (42% women). AEs were graded as mild, moderate (need for medication), severe (interruption due to the AE) or death (due to AE). More AEs occurred during the first procedures versus subsequent (8.4 and 5.5%, respectively). AEs were mild in 2.4% (due to access 54%, device 7%, hypotension 15%, tingling 8%), moderate in 3% (tingling 58%, urticaria 15%, hypotension 10%, nausea 3%), and severe in 0.4% of procedures (syncope/hypotension 32%, urticaria 17%, chills/fever 8%, arrhythmia/asystole 4.5%, nausea/vomiting 4%). Hypotension was most common if albumin was used as the replacement fluid, and urticaria when plasma was used. Arrhythmia occurred to similar extents when using plasma or albumin as replacement. In 64% of procedures with bronchospasm, plasma was part of the replacement fluid used. Severe AEs are rare. Although most reactions are mild and moderate, several side effects may be critical for the patient. We present side effects in relation to the procedures and suggest that safety is increased by regular vital sign measurements, cardiac monitoring and by having emergency equipment nearby.
We have recently described a system for the generation of dendritic cells (DC) and Langerhans cells (LC) from defined CD34+ precursors purified from peripheral blood of healthy adult volunteers (1). This study has now been extended by the characterization of two distinct subpopulations of CD34+ cells in normal human peripheral blood as defined by the expression of the skin homing receptor cutaneous lymphocyte-associated antigen (CLA). CD34+/CLA+ cells from normal peripheral blood were found to be CD71LOW/CD11a+/CD11b+/CD49d+/ CD45RA+ whereas CD34+/CLA− cells displayed the CD71+/CD11aLOW/CD11bLOW/CD49d(+)/ CD45RALOW phenotype. To determine the differentiation pathways of these two cell populations, CD34+ cells were sorted into CLA+ and CLA− fractions, stimulated with GM-CSF and TNF-α in vitro, and then were cultured for 10 to 18 d. Similar to unfractionated CD34+ cells, the progeny of both cell populations contained sizable numbers (12–22%) of dendritically shaped, CD1a+/HLA-DR+++ cells. In addition to differences in their motility, the two dendritic cell populations generated differed from each other by the expression of LC-specific structures. Only the precursors expressing the skin homing receptor were found to differentiate into LC as evidenced by the presence of Birbeck granules. In contrast, CLA− precursor cells generated a CD1a+ DC population devoid of Birbeck granule–containing LC. Provided that comparable mechanisms as found in this study are also operative in vivo, we postulate that the topographic organization of the DC system is already determined, at least in part, at the progenitor level.
Background: Antibody tests are essential tools to investigate humoral immunity following SARS-CoV-2 infection or vaccination. While first-generation antibody tests have primarily provided qualitative results, accurate seroprevalence studies and tracking of antibody levels over time require highly specific, sensitive and quantitative test setups. Methods: We have developed two quantitative, easy-to-implement SARS-CoV-2 antibody tests, based on the spike receptor binding domain and the nucleocapsid protein. Comprehensive evaluation of antigens from several biotechnological platforms enabled the identification of superior antigen designs for reliable serodiagnostic. Cut-off modelling based on unprecedented large and heterogeneous multicentric validation cohorts allowed us to define optimal thresholds for the tests' broad applications in different aspects of clinical use, such as seroprevalence studies and convalescent plasma donor qualification. Findings: Both developed serotests individually performed similarly-well as fully-automated CE-marked test systems. Our described sensitivity-improved orthogonal test approach assures highest specificity (99.8%); thereby enabling robust serodiagnosis in low-prevalence settings with simple test formats. The inclusion of a calibrator permits accurate quantitative monitoring of antibody concentrations in samples collected at different time points during the acute and convalescent phase of COVID-19 and disclosed antibody level thresholds that correlate well with robust neutralization of authentic SARS-CoV-2 virus. Interpretation: We demonstrate that antigen source and purity strongly impact serotest performance. Comprehensive biotechnology-assisted selection of antigens and in-depth characterisation of the assays allowed us to overcome limitations of simple ELISA-based antibody test formats based on chromometric reporters, to yield comparable assay performance as fully-automated platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.