Introduction
A higher prevalence of individuals affected by Parkinsonism was found in Valcamonica, Italy. This may be related to ferro-alloy smelters in the area, releasing manganese (Mn) in the air, soil and water for about a century. There exists individual susceptibility for Mn neurotoxicity.
Aim
To analyse how polymorphism in genes regulating Mn metabolism and toxicity can modify neurophysiological effects of Mn exposure.
Materials and Methods
Elderly (N=255) and adolescents (N=311) from Northern Italy were examined for neuromotor and olfactory functions. Exposure to Mn was assessed in blood and urine by atomic absorption spectroscopy and in soil by a portable instrument based on X-Ray fluorescence technology. Polymorphisms in the Parkinson-related gene ATPase type 13A2 (ATP13A2, also called PARK9: rs3738815, rs2076602, rs4920608, rs2871776, rs2076600), and in the secretory pathway Ca2+/ Mn2+ ATPase isoform 1 gene (SPCA1: rs218498, rs3773814, rs2669858) were analysed by TaqMan probes.
Results
For both adolescents and elderly, negative correlations between Mn in soil and motor coordination (Rs=−0.20, p<0.001, Rs=−0.13, p=0.05 respectively) were demonstrated. Also among adolescents, negative correlations were seen between Mn in soil with odor identification (Rs=−0.17, p<0.01). No associations were seen for Mn in blood or urine. ATP13A2 polymorphisms rs4920608 and rs2871776 significantly modified the effects of Mn exposure on impaired motor coordination in elderly (p for interaction= 0.029, p= 0.041 respectively), also after adjustments for age and gender. The rs2871776 altered a binding site for transcription factor Insulinoma-associated 1.
Conclusions
ATP13A2 variation may be a risk marker for neurotoxic effects of Mn in humans.
BackgroundThe n-3 polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, which are present in fish, are protective against myocardial infarction. However, fish also contains methylmercury, which influences the risk of myocardial infarction, possibly by generating oxidative stress. Methylmercury is metabolized by conjugation to glutathione, which facilitates elimination. Glutathione is also an antioxidant. Individuals with certain polymorphisms in glutathione-related genes may tolerate higher exposures to methylmercury, due to faster metabolism and elimination and/or better glutathione-associated antioxidative capacity. They would thus benefit more from the protective agents in fish, such as eicosapentaenoic+docosahexaenoic acid and selenium. The objective for this study was to elucidate whether genetic polymorphisms in glutathione-related genes modify the association between eicosapentaenoic+docosahexaenoic acid or methylmercury and risk of first ever myocardial infarction.MethodsPolymorphisms in glutathione-synthesizing (glutamyl-cysteine ligase catalytic subunit, GCLC and glutamyl-cysteine ligase modifier subunit, GCLM) or glutathione-conjugating (glutathione S-transferase P, GSTP1) genes were genotyped in 1027 individuals from northern Sweden (458 cases of first-ever myocardial infarction and 569 matched controls). The impact of these polymorphisms on the association between erythrocyte-mercury (proxy for methylmercury) and risk of myocardial infarction, as well as between plasma eicosapentaenoic+docosahexaenoic acid and risk of myocardial infarction, was evaluated by conditional logistic regression. The effect of erythrocyte-selenium on risk of myocardial infarction was also taken into consideration.ResultsThere were no strong genetic modifying effects on the association between plasma eicosapentaenoic+docosahexaenoic acid or erythrocyte-mercury and risk of myocardial infarction risk. When eicosapentaenoic+docosahexaenoic acid or erythrocyte-mercury were divided into tertiles, individuals with GCLM-588 TT genotype displayed a lower risk relative to the CC genotype in all but one tertile; in most tertiles the odds ratio was around 0.5 for TT. However, there were few TT carriers and the results were not statistically significant. The results were similar when taking plasma eicosapentaenoic+docosahexaenoic acid, erythrocyte-selenium and erythrocyte-mercury into account simultaneously.ConclusionsNo statistically significant genetic modifying effects were seen for the association between plasma eicosapentaenoic+docosahexaenoic acid or erythrocyte-mercury and risk of myocardial infarction. Still, our results indicate that the relatively rare GCLM-588 TT genotype may have an impact, but a larger study is necessary for confirmation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.