BackgroundLiver injury is a known feature of severe malaria, but is only incidentally investigated in uncomplicated disease. In such cases, drug-induced hepatotoxicity is often thought to be the primary cause of the observed liver injury, and this can be a major concern in antimalaria drug development. We investigated liver function test (LFT) abnormalities in patients with imported uncomplicated malaria, and in Controlled Human Malaria Infection (CHMI) studies.MethodsClinical and laboratory data from 484 imported malaria cases and 254 CHMI participants were obtained from the Rotterdam Malaria Cohort database, and the Radboud University Medical Center database (between 2001 and 2017), respectively. Routine clinical LFTs, clinical profiles, parasite densities, hematological, and inflammation parameters were assessed in 217 patients with imported falciparum malaria upon admission, and from longitudinal data of 187 CHMI participants.FindingsUpon admission, the proportion of patients with imported uncomplicated malaria and elevated liver enzymes was 128/186 (69%). In CHMI, 97/187 (52%) participants showed LFT abnormalities, including mild (64%, >1.0 ≤ 2.5× upper limit of normal (ULN)), moderate (20%, >2.5 ≤ 5.0xULN) or severe (16%, >5.0xULN). LFT abnormalities were primarily ALT/AST elevations and to a lesser extent γGT and ALP. LFT abnormalities peaked shortly after initiation of treatment, regardless of drug regimen, and returned to normal within three to six weeks. Positive associations were found with parasite burden and inflammatory parameters, including cumulative inflammatory cytokine responses and oxidative stress markers (r = 0·65, p = 0·008, and r = −0·63, p = 0·001, respectively).InterpretationThis study shows that reversible liver injury is a common feature of uncomplicated falciparum malaria, most likely caused by an enduring pro-inflammatory response post treatment. The recognition of this phenomenon is of clinical relevance for individual patient care as well as clinical development of (new) antimalarial drugs.FundPATH Malaria Vaccine Initiative (MVI)
For some diseases, successful vaccines have been developed using a nonpathogenic counterpart of the causative microorganism of choice. The nonpathogenicity of the rodent Plasmodium berghei (Pb) parasite in humans prompted us to evaluate its potential as a platform for vaccination against human infection by Plasmodium falciparum (Pf), a causative agent of malaria. We hypothesized that the genetic insertion of a leading protein target for clinical development of a malaria vaccine, Pf circumsporozoite protein (CSP), in its natural pre-erythrocytic environment, would enhance Pb’s capacity to induce protective immunity against Pf infection. Hence, we recently generated a transgenic Pb sporozoite immunization platform expressing PfCSP (PbVac), and we now report the clinical evaluation of its biological activity against controlled human malaria infection (CHMI). This first-in-human trial shows that PbVac is safe and well tolerated, when administered by a total of ~300 PbVac-infected mosquitoes per volunteer. Although protective efficacy evaluated by CHMI showed no sterile protection at the tested dose, significant delays in patency (2.2 days, P = 0.03) and decreased parasite density were observed after immunization, corresponding to an estimated 95% reduction in Pf liver parasite burden (confidence interval, 56 to 99%; P = 0.010). PbVac elicits dose-dependent cross-species cellular immune responses and functional PfCSP-dependent antibody responses that efficiently block Pf sporozoite invasion of liver cells in vitro. This study demonstrates that PbVac immunization elicits a marked biological effect, inhibiting a subsequent infection by the human Pf parasite, and establishes the clinical validation of a new paradigm in malaria vaccination.
Background For malaria elimination efforts, it is important to better understand parasite transmission to mosquitoes and develop models for early-clinical evaluation of transmission-blocking interventions. Methods In a randomized open-label trial, 24 participants were infected by bites from Plasmodium falciparum 3D7-infected mosquitoes (mosquito bite [MB]; n = 12) or by induced blood-stage malaria (IBSM) with the same parasite line (n = 12). After subcurative piperaquine treatment, asexual parasite and gametocytes kinetics were assessed, and mosquito feeding experiments were performed. Results Study procedures were well tolerated. The median peak gametocyte density was 1304/mL (interquartile range, 308–1607/mL) after IBSM, compared with 14/mL (10–64/mL) after MB inoculation (P < .001), despite similar peak asexual parasite densities (P = .48). Peak gametocyte density was correlated with preceding pfap2-g transcripts, indicative of gametocyte commitment (ρ = 0.62; P = .002). Direct feeding assays resulted in mosquito infections from 9 of 12 participants after IBSM versus 0 of 12 after MB inoculation (P < .001). Conclusions We observed a striking effect of inoculation method on gametocyte production, suggesting higher gametocyte commitment after IBSM. Our direct comparison of MB and IBSM establishes the controlled human malaria infection transmission model, using intravenous administration of P. falciparum–infected erythrocytes as a model for early-clinical evaluation of interventions that aim to interrupt malaria transmission. Clinical Trial Registration NCT03454048
BackgroundLevels of both angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) correlate with malaria disease severity and are proposed as biomarkers and possible therapeutic targets. To establish their role in malaria, a systematic review was performed of the literature on Ang-1 and Ang-2 with regard to their potential as biomarkers in malaria and discuss their possible place in adjuvant treatment regimens.MethodsTen electronic databases were systematically searched to identify studies investigating Ang-1 and Ang-2 in human and murine malaria in both clinical and experimental settings. Information about the predictive value of Ang-1 and Ang-2 for disease severity and their regulatory changes in interventional studies were extracted.ResultsSome 579 studies were screened; 26 were included for analysis. In all five studies that determined Ang-1 levels and in all 11 studies that determined Ang-2 in different disease severity states in falciparum malaria, a decline in Ang-1 and an increase of Ang-2 levels was associated with increasing disease severity. All nine studies that determined angiopoietin levels in Plasmodium falciparum patients to study their ability as biomarkers could distinguish between multiple disease severity states; the more the disease severity states differed, the better they could be distinguished. Five studies differentiating malaria survivors from non-survivors with Ang-2 as marker found an AUROC in a range of 0.71–0.83, which performed as well or better than lactate. Prophylactic administration of FTY720, rosiglitazone or inhalation of nitric oxide (NO) during malaria disease in mice resulted in an increase in Ang-1, a decrease in Ang-2 and an increased survival. For rosiglitazone, a decrease in Ang-2/Ang-1 ratio was observed after post-infection treatment in mice and humans with malaria, but for inhalation of NO, an effect on Ang-1 and survival was only observed in mice.ConclusionBoth Ang-1 and Ang-2 levels correlate with and can distinguish between malaria disease severity states within the group of malaria-infected patients. However, distinct comparisons of disease severity states were made in distinct studies and not all distinctions made had clinical relevance. Changes in levels of Ang-1 and Ang-2 might also reflect treatment effectiveness and are promising therapeutic targets as part of multi-targeted therapy.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-016-1624-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.