The catalytically inactive mutant of Cas9 (dCas9) endonuclease has multiple biomedical applications, with the most useful being the activation/repression of transcription. dCas9 family members are also emerging as potential experimental tools for gene mapping at the level of individual live cells and intact tissue. We performed initial testing on a set of tools for Cas9-mediated visualization of nuclear compartments. We investigated doxycycline (Dox)-inducible (Tet-On) intracellular distribution of constructs encoding dCas9 orthologs from St. thermophilus (St) and N. meningitides (Nm) fused with EGFP and mCherry fluorescent proteins (FP) in human A549 cells. We also studied time-dependent expression of these chimeric fluorescent constructs (dCas9-FP) after Tet-On induction in live cells and compared it with the time course of dCas9-FP expression in experimental dCas9-FP-expressing tumor xenografts using a combination of fluorescence imaging and in vivo contrast-assisted magnetic resonance imaging for assessing the extent of tumor perfusion. In vivo Dox-induction of mCherry-chimera expression occurred in tumor xenografts as early as 24 h post-induction and was visualized by using optical clearing (OC) of the skin. OC via topical application of gadobutrol enabled high-contrast imaging of FP expression in tumor xenografts due to a 1.1–1.2-fold increase in FI in both the red and green channels.
One of the latest methods in modern molecular biology is labeling genomic loci in living cells using fluorescently labeled Cas protein. The NIH Foundation has made the mapping of the 4D nucleome (the three-dimensional nucleome on a timescale) a priority in the studies aimed to improve our understanding of chromatin organization. Fluorescent methods based on CRISPR–Cas are a significant step forward in visualization of genomic loci in living cells. This approach can be used for studying epigenetics, cell cycle, cellular response to external stimuli, rearrangements during malignant cell transformation, such as chromosomal translocations or damage, as well as for genome editing. In this review, we focused on the application of CRISPR–Cas fluorescence technologies as components of multimodal imaging methods for in vivo mapping of chromosomal loci, in particular, attribution of fluorescence signal to morphological and anatomical structures in a living organism. The review discusses the approaches to the highly sensitive, high-precision labeling of CRISPR–Cas components, delivery of genetically engineered constructs into cells and tissues, and promising methods for molecular imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.