Abstract. The sliding window approach of detecting rigid objects (such as cars) is predicated on the belief that the object can be identified from the appearance in a small region around the object. Other types of objects of amorphous spatial extent (e.g., trees, sky), however, are more naturally classified based on texture or color. In this paper, we seek to combine recognition of these two types of objects into a system that leverages "context" toward improving detection. In particular, we cluster image regions based on their ability to serve as context for the detection of objects. Rather than providing an explicit training set with region labels, our method automatically groups regions based on both their appearance and their relationships to the detections in the image. We show that our things and stuff (TAS) context model produces meaningful clusters that are readily interpretable, and helps improve our detection ability over state-of-the-art detectors. We also present a method for learning the active set of relationships for a particular dataset. We present results on object detection in images from the PASCAL VOC 2005/2006 datasets and on the task of overhead car detection in satellite images, demonstrating significant improvements over state-of-the-art detectors.
We address the problem of segmenting 3D scan data into objects or object classes.
Recent years have witnessed a proliferation of large-scale knowledge bases, including Wikipedia, Freebase, YAGO, Microsoft's Satori, and Google's Knowledge Graph. To increase the scale even further, we need to explore automatic methods for constructing knowledge bases. Previous approaches have primarily focused on text-based extraction, which can be very noisy. Here we introduce Knowledge Vault, a Web-scale probabilistic knowledge base that combines extractions from Web content (obtained via analysis of text, tabular data, page structure, and human annotations) with prior knowledge derived from existing knowledge repositories. We employ supervised machine learning methods for fusing these distinct information sources. The Knowledge Vault is substantially bigger than any previously published structured knowledge repository, and features a probabilistic inference system that computes calibrated probabilities of fact correctness. We report the results of multiple studies that explore the relative utility of the different information sources and extraction methods.
The task of data fusion is to identify the true values of data items (e.g., the true date of birth for Tom Cruise) among multiple observed values drawn from different sources (e.g., Web sites) of varying (and unknown) reliability. A recent survey [20] has provided a detailed comparison of various fusion methods on Deep Web data. In this paper, we study the applicability and limitations of different fusion techniques on a more challenging problem: knowledge fusion. Knowledge fusion identifies true subject-predicateobject triples extracted by multiple information extractors from multiple information sources. These extractors perform the tasks of entity linkage and schema alignment, thus introducing an additional source of noise that is quite different from that traditionally considered in the data fusion literature, which only focuses on factual errors in the original sources. We adapt state-of-the-art data fusion techniques and apply them to a knowledge base with 1.6B unique knowledge triples extracted by 12 extractors from over 1B Web pages, which is three orders of magnitude larger than the data sets used in previous data fusion papers. We show great promise of the data fusion approaches in solving the knowledge fusion problem, and suggest interesting research directions through a detailed error analysis of the methods.
Open information extraction approaches have led to the creation of large knowledge bases from the Web. The problem with such methods is that their entities and relations are not canonicalized, leading to redundant and ambiguous facts. For example, they may store Barack Obama, was born in, Honolulu and Obama, place of birth, Honolulu . In this paper, we present an approach based on machine learning methods that can canonicalize such Open IE triples, by clustering synonymous names and phrases.We also provide a detailed discussion about the different signals, features and design choices that influence the quality of synonym resolution for noun phrases in Open IE KBs, thus shedding light on the middle ground between "open" and "closed" information extraction systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.