Intensive industrial and urban growth has led to the release of increasing amounts of environmental pollutants. Contamination by metals, in particular, deserves special attention due to their toxicity and potential to bioaccumulate via the food chain. Conventional techniques for the removal of toxic metals, radionuclides and precious metals from wastewater all have a number of drawbacks, such as incomplete metal extraction, high cost and risk of generating hazardous by‐products. Biosorption is a cost‐effective and environment‐friendly technology, an alternative to conventional wastewater treatment methods. Biosorption is a metabolically independent process, in which dead microbial biomass is capable of removal and concentrating metal ions from aqueous solutions. Free microbial biosorbents are of small size and low density, insufficient mechanical stability and low elasticity, which causes problems with metal ion desorption, separation of the sorbent from the medium and its regeneration. Hence, the possibilities for the implementation of continuous biosorbent processes for metal removal in flow‐type reactor systems are reduced and the practical application of biosorption in industrial conditions is limited. By immobilizing microbial biomass on suitable carriers the disadvantages of free biosorbents are eliminated and more opportunities for practical use of biosorption become available. This review examines different immobilization techniques and carriers, certain basic features and possibilities of using immobilized microbial biosorbents for the removal and concentration of metals from aqueous solutions.
Biosorption of Pb(II) ions from a model solution was investigated using Streptomyces fradiae biomass as biosorbent pretreated with sodium hydroxide. The mycelium is a waste product from the biotechnological production of the macrolide antibiotic tylosin in the pharmaceutical industry. The biosorption study was conducted in a batch system with respect to initial pH, initial metal concentration and contact time. For a description of the biosorption equilibrium, Langmuir and Freundlich adsorption models were used. Equilibrium data fitted better to the Langmuir model and the calculated maximum biosorption capacity was 138.88 mg¢g ¡1 at initial pH 5.0, contact time of 120 min, biosorbent dose of 1 g¢dm ¡3and concentration range for the Pb(II) ions from 10 to 200 mg¢dm ¡3 . Pseudo-first and pseudo-second order kinetic models were applied to the experimental data. The results indicated that the Pb(II) uptake process followed the Ho equation. The interference of co-present ions Cu(II) and Zn(II) on the Pb(II) biosorption was also studied. It was determined that at the highest Pb(II) concentration (200 mg¢dm ¡3 ) Cu(II) and Zn(II) caused 27.22% and 24.88% decreasing in Pb(II) uptake, respectively. The obtained results could be useful in prospective applications of chemically modified waste mycelium of S. fradiae as an alternative biosorbent for Pb(II) removal from aqueous solutions.
Waste biomass from Bacillus cereus immobilized in sodium alginate and co-immobilized with activated carbon or with bentonite into alginate gel was studied for Pb(II), Cd(II) and Hg(II) removal from aqueous solutions. The composite biosorbent consisting of waste B. cereus biomass co-immobilized with activated carbon into alginate beads was selected as the most prospective for heavy metals removal. Immobilization increased both the removal capacity and the mechanical strength of the biosorbent. Major process parameters were optimized and maximum removal efficiency of 92.13% was reached for Pb(II) ions at pH 5.0, biosorbent dosage 2 g/L, temperature 25 C, agitation speed 120 rpm for 120 min.
Pretreated waste Streptomyces fradiae biomass was utilized as an eco-friendly sorbent for Congo Red (CR) and Methylene Blue (MB) removal from aqueous solutions. The biosorbent was characterized by Fourier transform infrared spectroscopy. Batch experiments were conducted to study the effect of pH, biosorbent dosage, initial concentration of adsorbates, contact time and temperature on the biosorption of the two dyes. The equilibrium adsorption data were analysed using Freundlich and Langmuir models. Both models fitted well the experimental data. The maximum biosorption capacity of the pretreated Streptomyces fradiae biomass was 46.64 mg g-1 for CR and 59.63 mg g-1 for MB, at a pH 6.0, with the contact time of 120 min, the biosorbent dosage of 2 g dm-3 and the temperature of 298 K. Lagergren and Ho kinetic models were used to analyse the kinetic data obtained from different batch experiments. The biosorption of both dyes followed better the pseudo-second order kinetic model. The calculated values for ΔG, ΔS, and ΔH indicated that the biosorption of CR and MB onto the waste pretreated biomass was feasible, spontaneous, and exothermic in the selected temperature range and conditions.
Betonica bulgarica is an endemic species distributed in Bulgaria. The chemical composition of the essential oil analysed by GC–MS (Gas chromatography–mass spectrometry) and the content of trace elements analysed by ICP–MS (Inductively coupled plasma mass spectrometry) were determined. Additionally, a study on the types and distribution of trichomes was done using a microscope with a camera. The essential oil was characterized using a high concentration of sesquiterpene hydrocarbons, whose major compounds are β-caryophyllene (17.4%), germacrene D (9.9%), and β-bourbonene (6.7%). The contents of manganese (177.2 µg/g) and strontium (156.8 µg/g) were highest among the investigated micronutrients. Two types of trichomes were identified on the adaxial and abaxial epidermises of the leaves of B. bulgarica—covering and glandular. Peltate stacked glandular trichomes with a four-celled head of type B were observed on the leaf surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.