Oxygenic photosynthesis crucially depends on proteins that possess Fe or Fe/S complexes as co-factors or prosthetic groups. Here, we show that the small regulatory RNA (sRNA) IsaR1 (Iron-Stress-Activated RNA 1) plays a pivotal role in acclimation to low-iron conditions. The IsaR1 regulon consists of more than 15 direct targets, including Fe-containing proteins involved in photosynthetic electron transfer, detoxification of anion radicals, citrate cycle, and tetrapyrrole biogenesis. IsaR1 is essential for maintaining physiological levels of Fe/S cluster biogenesis proteins during iron deprivation. Consequently, IsaR1 affects the acclimation of the photosynthetic apparatus to iron starvation at three levels: (1) directly, via posttranscriptional repression of gene expression; (2) indirectly, via suppression of pigment; and (3) Fe/S cluster biosynthesis. Homologs of IsaR1 are widely conserved throughout the cyanobacterial phylum. We conclude that IsaR1 is a critically important riboregulator. These findings provide a new perspective for understanding the regulation of iron homeostasis in photosynthetic organisms.
sRNAs are a taxonomically-restricted but transcriptomically-abundant class of post-transcriptional regulators. While of major importance for adaption to the environment, we currently lack global-scale methodology enabling target identification, especially in species without known RNA hub proteins (e.g. Hfq). Using psoralen RNA cross-linking and Illumina-sequencing we identify RNA–RNA interacting pairs in vivo in Bacillus subtilis, resolving previously well-described interactants. Although sRNA–sRNA pairings are rare (compared with sRNA–mRNA), we identify a robust example involving the conserved sRNA RoxS and an unstudied sRNA RosA (Regulator of sRNA A). We show RosA to be the first confirmed RNA sponge described in a Gram-positive bacterium. RosA interacts with at least two sRNAs, RoxS and FsrA. The RosA/RoxS interaction not only affects the levels of RoxS but also its processing and regulatory activity. We also found that the transcription of RosA is repressed by CcpA, the key regulator of carbon-metabolism in B. subtilis. Since RoxS is already known to be transcriptionally controlled by malate via the transcriptional repressor Rex, its post-transcriptional regulation by CcpA via RosA places RoxS in a key position to control central metabolism in response to varying carbon sources.
Photosynthetic microorganisms encounter an erratic nutrient environment characterized by periods of iron limitation and sufficiency. Surviving in such an environment requires mechanisms for handling these transitions. Our study identified a regulatory system involved in the process of recovery from iron limitation in cyanobacteria. We set out to study the role of bacterioferritin co-migratory proteins during transitions in iron bioavailability in the cyanobacterium Synechocystis sp. PCC 6803 using knockout strains coupled with physiological and biochemical measurements. One of the mutants displayed slow recovery from iron limitation. However, we discovered that the cause of the phenotype was not the intended knockout but rather the serendipitous selection of a mutation in an unrelated locus, slr1658. Bioinformatics analysis suggested similarities to two-component systems and a possible regulatory role. Transcriptomic analysis of the recovery from iron limitation showed that the slr1658 mutation had an extensive effect on the expression of genes encoding regulatory proteins, proteins involved in the remodeling and degradation of the photosynthetic apparatus and proteins modulating electron transport. Most significantly, expression of the cyanobacterial homologue of the cyclic electron transport protein PGR5 was upregulated 1000-fold in slr1658 disruption mutants. pgr5 transcripts in the Δslr1658 mutant retained these high levels under a range of stress and recovery conditions. The results suggest that slr1658 is part of a regulatory operon that, among other aspects, affects the regulation of alternative electron flow. Disruption of its function has deleterious results under oxidative stress promoting conditions.
Small RNAs (sRNAs) are a taxonomically-restricted but transcriptomically-abundant class of post-transcriptional regulators. While potentially of importance, we know the function of few. This is in no small part because we lack global-scale methodology enabling target identification, this being especially acute in species without known RNA meeting point proteins (e.g. Hfq). We apply a combination of psoralen RNA cross-linking and Illumina-sequencing to identify RNA-RNA interacting pairs in vivo in Bacillus subtilis, resolving previously well-described interactants. Although sRNA-sRNA pairings are rare (compared with sRNA/mRNA), we identify a robust example involving the unusually conserved sRNA (RoxS/RsaE) and an unstudied sRNA that we term Regulator of small RNA A (RosA). This interaction is found in independent samples across multiple conditions. Given the possibility of a novel associated regulatory mechanism, and the rarity of well-characterised bacterial sRNA-sRNA interactions, we mechanistically dissect RosA and its interactants. RosA we show to be a sponge RNA, the first to be described in a Gram-positive bacterium. RosA interacts with at least two sRNAs, RoxS and FsrA. Unexpectedly, it acts differently on each. As expected of a sponge RNA, FsrA is sequestered by RosA. The RosA/RoxS interaction is more complex affecting not only the level of RoxS but also its processing and efficacy. Importantly, RosA provides the condition-dependent intermediary between CcpA, the key regulator of carbon metabolism, and RoxS. This not only provides evidence for a novel, and functionally important, regulatory mechanism, but in addition, provides the missing link between transcriptional and post-transcriptional regulation of central metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.