In RadarCat we present a small, versatile radar-based system for material and object classification which enables new forms of everyday proximate interaction with digital devices. We demonstrate that we can train and classify different types of materials and objects which we can then recognize in real time. Based on established research designs, we report on the results of three studies, first with 26 materials (including complex composite objects), next with 16 transparent materials (with different thickness and varying dyes) and finally 10 body parts from 6 participants. Both leave one-out and 10-fold cross-validation demonstrate that our approach of classification of radar signals using random forest classifier is robust and accurate. We further demonstrate four working examples including a physical object dictionary, painting and photo editing application, body shortcuts and automatic refill based on RadarCat. We conclude with a discussion of our results, limitations and outline future directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.