In terms of fine-grain luminescence dating applications, the efficiency of α-radiation in producing luminescence is an important issue when determining environmental dose rates. Efficiency is usually assessed by measuring the ratio of luminescence intensities induced by known α and β laboratory doses. Consequently, most thermoluminescence (TL)/optically stimulated luminescence (OSL) readers besides the standard 90Sr/90Y β-source can also be equipped with a 241Am α-source. A crucial point is, however, the calibration of these sources. The calibration of β-sources is routinely performed using standard quartz samples previously irradiated by a known γ-dose, though, in the case of α-sources, the procedure is less standardised, partly because there are no calibration materials with a known α-efficiency value. In this study, we aimed to cross-calibrate the built-in α-source of a RISØ TL/OSL DA-20 luminescence reader by testing and comparing five procedures, applying different samples (quartz and polymineral), different protocols multiple aliquot regeneration (MAR) and single aliquot regeneration (SAR) and different calibration sources. Throughout the tests, the performance of the fine-grain RISØ calibration quartz was also assessed. Regardless of the applied procedure, the calculated α-dose rates with one exception gave similar results. On the one hand, the applied polymineral sample due to potential fading, fairly high residuals after bleaching and relatively low infrared stimulated luminescence (IRSL) sensitivity proved to be the least optimal choice for cross-calibration. On the other hand, the tested natural fine grain quartz gave almost identical results when using different types of bleaching and different calibration α-sources. The mean dose rate determined for the source was 0.080 ± 0.004 Gy/s. The cross-calibration by using the RISØ fine grain quartz yielded somewhat higher but at the apparent uncertainty of luminescence dating still not significantly different dose rate for the source under calibration. Tests showed that the calibration quartz saturates at a relatively low α-dose, and the shape of α- and β-dose-response curves also depart from each other quite early, suggesting that cross-calibration with this material seems to be reliable only at low doses. For the first time, the a-value of the fine-grain calibration quartz was also determined using the freshly calibrated α-source, and the measurement yielded a 0.054 ± 0.003 value. We propose that after further validation of this result, the RISØ calibration quartz can ease the dose rate assessment of uncalibrated α-sources in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.