Abstract. Laplace's method is one of the fundamental techniques in the asymptotic approximation of integrals. The coefficients appearing in the resulting asymptotic expansion, arise as the coefficients of a convergent or asymptotic series of a function defined in an implicit form. Due to the tedious computation of these coefficients, most standard textbooks on asymptotic approximations of integrals do not give explicit formulas for them. Nevertheless, we can find some more or less explicit representations for the coefficients in the literature: Perron's formula gives them in terms of derivatives of an explicit function; Campbell, Fröman and Walles simplified Perron's method by computing these derivatives using an explicit recurrence relation. The most recent contribution is due to Wojdylo, who rediscovered the Campbell, Fröman and Walles formula and rewrote it in terms of partial ordinary Bell polynomials. In this paper, we provide an alternative representation for the coefficients, which contains ordinary potential polynomials. The proof is based on Perron's formula and a theorem of Comtet. The asymptotic expansions of the gamma function and the incomplete gamma function are given as illustrations.
Abstract. In this paper we derive new representations for the incomplete gamma function, exploiting the reformulation of the method of steepest descents by C. J. Howls (Howls, Proc. R. Soc. Lond. A 439 (1992) 373-396). Using these representations, we obtain a number of properties of the asymptotic expansions of the incomplete gamma function with large arguments, including explicit and realistic error bounds, asymptotics for the late coefficients, exponentially improved asymptotic expansions, and the smooth transition of the Stokes discontinuities.
Abstract. The aim of this paper is to derive new representations for the Hankel and Bessel functions, exploiting the reformulation of the method of steepest descents by M. V. Berry and C. J. Howls (Berry and Howls, Proc. R. Soc. Lond. A 434 (1991) 657-675). Using these representations, we obtain a number of properties of the large order asymptotic expansions of the Hankel and Bessel functions due to Debye, including explicit and numerically computable error bounds, asymptotics for the late coefficients, exponentially improved asymptotic expansions, and the smooth transition of the Stokes discontinuities.
Using a series transformation, the Stirling-De Moivre asymptotic series approximation to the Gamma function is converted into a new one with better convergence properties. The new formula is being compared with those of Stirling, Laplace, and Ramanujan for real arguments greater than 0.5 and turns out to be, for equal number of "correction" terms, numerically superior to all of them. As a side benefit, a closed-form approximation has turned up during the analysis which is about as good as 3rd order Stirling's (maximum relative error smaller than 1e − 10 for real arguments greater or equal to 24).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.