Polychlorinated biphenyls (PCBs) can be metabolized by cytochromes P450 to hydroxylated biotransformation products. In mammalian studies, some of the hydroxylated products have been shown to be strong inhibitors of steroid sulfotransferases. As a part of ongoing research into the bioavailability of environmental pollutants in catfish intestine, we investigated the effects of a series of hydroxylated PCBs (OH-PCBs) on two conjugating enzymes, phenol-type sulfotransferase and glucuronosyltransferase. We incubated cytosolic and microsomal samples prepared from intestinal mucosa with 3-hydroxy-benzo[a]pyrene and appropriate cosubstrates and measured the effect of OH-PCBs on the formation of BaP-3-glucuronide and BaP-3-sulfate. We used PCBs with 4, 5, and 6 chlorine substitutions and the phenolic group in the ortho, meta, and para positions. OH-PCBs with the phenolic group in the ortho position were weak inhibitors of sulfotransferase; the median inhibitory concentration (IC50) ranged from 330 to 526 microM. When the phenol group was in the meta or para position, the IC50 was much lower (17.8-44.3 microM). The OH-PCBs were more potent inhibitors of glucuronosyltransferase, with IC50s ranging from 1.2 to 36.4 microM. The position of the phenolic group was not related to the inhibitory potency: the two weakest inhibitors of sulfotransferase, with the phenolic group in the ortho position, were 100 times more potent as inhibitors of glucuronosyltransferase. Inhibition of glucuronosyltransferase by low concentrations of OH-PCBs has not been reported before and may have important consequences for the bioavailability, bioaccumulation, and toxicity of other phenolic environmental contaminants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.