The Tibetan Plateau (TP) is primarily influenced by the northern hemispheric middle latitude Westerlies and the Indian summer monsoon (ISM). The extent, long-distance effects and potential long-term changes of these two atmospheric circulations are not yet fully understood. Here, we analyse modern airborne pollen in a transition zone of seasonally alternating dominance of the Westerlies and the ISM to develop a pollen discrimination index (PDI) that allows us to distinguish between the intensities of the two circulation systems. This index is applied to interpret a continuous lacustrine sedimentary record from Lake Nam Co covering the past 24 cal kyr BP to investigate long-term variations in the atmospheric circulation systems. Climatic variations on the central TP widely correspond to those of the North Atlantic (NA) realm, but are controlled through different mechanisms resulting from the changing climatic conditions since the Last Glacial Maximum (LGM). During the LGM, until 16.5 cal kyr BP, the TP was dominated by the Westerlies. After 16.5 cal kyr BP, the climatic conditions were mainly controlled by the ISM. From 11.6 to 9 cal kyr BP, the TP was exposed to enhanced solar radiation at the low latitudes, resulting in greater water availability.
Holocene lake level fluctuations were reconstructed from a 2.7-m sediment core from Nam Co, Central Tibet, China dating to [7.2 cal ka BP. Results were compared to existing lake records from the Tibetan Plateau to infer variations in the strength of the Asian Monsoon. Geomorphological features in the Nam Co catchment, such as beach ridges and lake terraces, indicate high lake stands during the late Glacial. A major low stand is suggested for the Last Glacial Maximum (LGM). Sands and sandy silts at the base of the core are transgressive facies, with material transported by melt water and deposited under rising lake level conditions that followed the LGM low stand. Variations in grain size, major elements, biomarker stable isotopes and minerals in the core suggest a climate evolution reflected in at least five depositional units and subunits. Sediments in Unit I (*7.2 to *5.4 cal ka BP) were deposited at highest lake levels. Large amounts of allogenic minerals and allochthonous organic matter suggest high precipitation and melt water input, implying positive water balance. Increasing aquatic productivity points to favourable environmental conditions. Unit II (*5.4 to *4.0 cal ka BP) marks a transition between favourable, stable hydrological conditions and lake level decrease. Lower lake levels were a consequence of drier climate with less monsoonal precipitation, higher evaporation rates, and increased moisture recycling in the catchment. Unit III (*4.0 to *1.4 cal ka BP) reflects the driest periods recorded, at *3.7 cal ka BP and 1.6 cal ka BP. Lake shrinkage and salinization was interrupted as suggested by the deposition of Unit IV (*1.4 to *0.8 cal ka BP), when increased precipitation and runoff that might be related to the Medieval Warm Period, led to a stable, but still low lake level. Unit V (800 cal years BPpresent) is characterized by progressive lake shrinkage due to intense evaporation. Paleolimnol (2010) 43:625-648 DOI 10.1007 data indicate the lake level is rising. Comparison of the Nam Co record with other lake records from the Tibetan Plateau suggests general agreement with the broader picture of Holocene environmental evolution. The timing of dry and wet climate conditions at lake sites across Tibet indicates a gradually decreasing influence of the southern monsoon during the Holocene, from NW to SE. Nevertheless, further research is needed to improve our understanding of Holocene spatio-temporal hydrological variations across the Asian continent.
Comprehensive field investigations have been conducted four times on Nam Co, central Tibet, from September 2005 to September 2008. Here, we present the preliminary results focusing on the bathymetric survey and water quality measurements. The isobathic map shows that Nam Co is a high-altitude, deep lake where a flat and large basin lies in the central part with a water depth of more than 90 m. Water depth data from the northwestern bank areas of Nam Co provide unquestionable evidence of rising water levels in the last 3 decades because of the formation of two small islands that were still peninsulas in the 1970s. Water quality measurements taken at 19 stations during three summer field campaigns (2006, 2007 and 2008) covering almost all of the lake areas showed that the temperature, pH, dissolved oxygen and electric conductivity of surface water are on average 11.43°C, 9.21, 8.90 mg l -1 and 1,851 lS cm -1 , respectively. The surface water shows no obvious spatial variability among all the stations. Vertical fluctuations of profiles, however, display some differences in thermocline and related parameters, such as pH and dissolved oxygen. According to the vertical variations of water quality parameters, the water column in relatively deep lake areas of Nam Co could be divided into three layers with distinctly various features: the epilimnion is from the surface to about 18-20 m depth in which the parameters are homogeneous with higher temperature and abundant sunlight; the metalimnion ranged from 20-60 m where a thermocline develops; the deepest layer forms a cold and dark hypolimnion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.