BackgroundLymnaeid snails transmit medical and veterinary important trematodiases, mainly fascioliasis. Vector specificity of fasciolid parasites defines disease distribution and characteristics. Different lymnaeid species appear linked to different transmission and epidemiological patterns. Pronounced susceptibility differences to absolute resistance have been described among lymnaeid populations. When assessing disease characteristics in different endemic areas, unexpected results were obtained in studies on lymnaeid susceptibility to Fasciola. We undertook studies to understand this disease transmission heterogeneity.Methodology/Principal FindingsA ten-year study in Iran, Egypt, Spain, the Dominican Republic, Mexico, Venezuela, Ecuador and Peru, demonstrated that such heterogeneity is not due to susceptibility differences, but to a hitherto overlooked cryptic species, Lymnaea schirazensis, confused with the main vector Galba truncatula and/or other Galba/Fossaria vectors. Nuclear rDNA and mtDNA sequences and phylogenetic reconstruction highlighted an old evolutionary divergence from other Galba/Fossaria species, and a low intraspecific variability suggesting a recent spread from one geographical source. Morphometry, anatomy and egg cluster analyses allowed for phenotypic differentiation. Selfing, egg laying, and habitat characteristics indicated a migration capacity by passive transport. Studies showed that it is not a vector species (n = 8572 field collected, 20 populations): snail finding and penetration by F. hepatica miracidium occur but never lead to cercarial production (n = 338 experimentally infected).Conclusions/SignificanceThis species has been distorting fasciolid specificity/susceptibility and fascioliasis geographical distribution data. Hence, a large body of literature on G. truncatula should be revised. Its existence has henceforth to be considered in research. Genetic data on livestock, archeology and history along the 10,000-year post-domestication period explain its wide spread from the Neolithic Fertile Crescent. It is an efficient biomarker for the follow-up of livestock movements, a crucial aspect in fascioliasis emergence. It offers an outstanding laboratory model for genetic studies on susceptibility/resistance in F. hepatica/lymnaeid interaction, a field of applied research with disease control perspectives.
Sinistral and dextral snails have repeatedly evolved by left-right reversal of bilateral asymmetry as well as coiling direction. However, in most snail species, populations are fixed for either enantiomorph and laboratory breeding is difficult even if chiral variants are found. Thus, only few experimental models of chiral variation within species have been available to study the evolution of the primary asymmetry. We have established laboratory lines of enantiomorphs of the pond snail Lymnaea stagnalis starting from a wild population. Crossing experiments demonstrated that the primary asymmetry of L. stagnalis is determined by the maternal genotype at a single nuclear locus where the dextral allele is dominant to the sinistral allele. Field surveys revealed that the sinistral allele has persisted for at least 10 years, that is, about 10 generations. The frequency of the sinistral allele showed large fluctuations, reaching as frequent as 0.156 in estimate under the assumption of Hardy-Weinberg equilibrium. The frequency shifts suggest that selection against chiral reversal was not strong enough to counterbalance genetic drift in an ephemeral small pond. Because of the advantages as a model animal, enantiomorphs of L. stagnalis can be a unique system to study aspects of chirality in diverse biological disciplines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.