Today, surface acoustic waves (SAWs) and bulk acoustic waves are already two of the very few phononic technologies of industrial relevance and can been found in a myriad of devices employing these nanoscale earthquakes on a chip. Acoustic radio frequency filters, for instance, are integral parts of wireless devices. SAWs in particular find applications in life sciences and microfluidics for sensing and mixing of tiny amounts of liquids. In addition to this continuously growing number of applications, SAWs are ideally suited to probe and control elementary excitations in condensed matter at the limit of single quantum excitations. Even collective excitations, classical or quantum are nowadays coherently interfaced by SAWs.
This wide, highly diverse, interdisciplinary and continuously expanding spectrum literally unites advanced sensing and manipulation applications. Remarkably, SAW technology is inherently multiscale and spans from single atomic or nanoscopic units up even to the millimeter scale.
The aim of this Roadmap is to present a snapshot of the present state of surface acoustic wave science and technology in 2019 and provide an opinion on the challenges and opportunities that the future holds from a group of renown experts, covering the interdisciplinary key areas, ranging from fundamental quantum effects to practical applications of acoustic devices in life science.
Molecularly imprinted polyurethanes are presented as sensitive coatings for the detection of polycyclic aromatic hydrocarbons in water. These sensor layers were combined with fluorescence and mass-sensitive transducers. Imprinting based on van der Waals interactions allows detection of these analytes even without any pronounced functionality. The geometry of the imprint molecule determines the selectivity of the sensor layer. In varying the size of template molecules from anthracene up to 1,12benzoperylene, selectivity is tuned to a distinct analyte. The enrichment factor of up to approximately 10 7 renders detection down to the ppt range possible with hardly any matrix effect by humic acids.
To determine the sound velocity in wurtzite AlxGa1−xN, we have used surface acoustic-wave (SAW) delay lines on AlxGa1−xN/c-Al2O3. AlxGa1−xN films with compositions from x=0 to x=1 were grown by plasma-induced molecular beam epitaxy. Starting from published data, we fine tuned the values of the elastic moduli used in numerical calculations such that the simulated and measured dispersion of the SAW were in good agreement. Based on these values, the surface and bulk acoustic-wave velocities of single-crystal AlxGa1−xN were determined as functions of the composition. The resulting SAW velocities ranged from 3700 to 5760 m/s for GaN and AlN, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.