The increasing use of tissue dosimetry estimated using pharmacokinetic models in chemical risk assessments in various jurisdictions necessitates the development of internationally recognized good modelling practice (GMP). These practices would facilitate sharing of models and model evaluations and consistent applications in risk assessments. Clear descriptions of good practices for (1) model development i.e., research and analysis activities, (2) model characterization i.e., methods to describe how consistent the model is with biology and the strengths and limitations of available models and data, such as sensitivity analyses, (3) model documentation, and (4) model evaluation i.e., independent review that will assist risk assessors in their decisions of whether and how to use the models, and also model developers to understand expectations for various purposes e.g., research versus application in risk assessment. Next steps in the development of guidance for GMP and research to improve the scientific basis of the models are described based on a review of the current status of the application of physiologically based pharmacokinetic (PBPK) models in risk assessments in Europe, Canada, and the United States at the International Workshop on the Development of GMP for PBPK Models in Greece on April 27-29, 2007.
A flow-through system was developed to investigate the effects of time-variable exposure of pesticides on algae. A recently developed algae population model was used for simulations supported and verified by laboratory experiments. Flow-through studies with Desmodesmus subspicatus and Pseudokirchneriella subcapitata under time-variable exposure to isoproturon were performed, in which the exposure patterns were based on the results of FOrum for Co-ordination of pesticide fate models and their USe (FOCUS) model calculations for typical exposure situations via runoff or drain flow. Different types of pulsed exposure events were realized, including a whole range of repeated pulsed and steep peaks as well as periods of constant exposure. Both species recovered quickly in terms of growth from short-term exposure and according to substance dissipation from the system. Even at a peak 10 times the maximum predicted environmental concentration of isoproturon, only transient effects occurred on algae populations. No modified sensitivity or reduced growth was observed after repeated exposure. Model predictions of algal growth in the flow-through tests agreed well with the experimental data. The experimental boundary conditions and the physiological properties of the algae were used as the only model input. No calibration or parameter fitting was necessary. The combination of the flow-through experiments with the algae population model was revealed to be a powerful tool for the assessment of pulsed exposure on algae. It allowed investigating the growth reduction and recovery potential of algae after complex exposure, which is not possible with standard laboratory experiments alone. The results of the combined approach confirm the beneficial use of population models as supporting tools in higher-tier risk assessments of pesticides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.