columns packed with 25 weight % Apiezon L on 30-to 60-mesh Chromosorb W. Two sets of chromatograms were obtained on these columns to correspond to those on the bleeding columns. The same flow rates, temperature programs, and sample sizes were used. Under these conditions the naphthalene was eluted at 175°C. and the p-terphenyl below 320°C. where a single-column base-line would not have LITERATURE CITED
The manufacture of 3D scaffolds with specific controlled porous architecture, defined microstructure and an adjustable degradation profile was achieved using two-photon polymerization (TPP) with a size of 2 × 4 × 2 mm3. Scaffolds made from poly(D,L-lactide-co-ɛ-caprolactone) copolymer with varying lactic acid (LA) and ɛ -caprolactone (CL) ratios (LC16:4, 18:2 and 9:1) were generated via ring-opening-polymerization and photoactivation. The reactivity was quantified using photo-DSC, yielding a double bond conversion ranging from 70% to 90%. The pore sizes for all LC scaffolds were see 300 μm and throat sizes varied from 152 to 177 μm. In vitro degradation was conducted at different temperatures; 37, 50 and 65 °C. Change in compressive properties immersed at 37 °C over time was also measured. Variations in thermal, degradation and mechanical properties of the LC scaffolds were related to the LA/CL ratio. Scaffold LC16:4 showed significantly lower glass transition temperature (Tg) (4.8 °C) in comparison with the LC 18:2 and 9:1 (see 32 °C). Rates of mass loss for the LC16:4 scaffolds at all temperatures were significantly lower than that for LC18:2 and 9:1. The degradation activation energies for scaffold materials ranged from 82.7 to 94.9 kJ mol−1. A prediction for degradation time was applied through a correlation between long-term degradation studies at 37 °C and short-term studies at elevated temperatures (50 and 65 °C) using the half-life of mass loss (Time (M1/2)) parameter. However, the initial compressive moduli for LC18:2 and 9:1 scaffolds were 7 to 14 times higher than LC16:4 (see 0.27) which was suggested to be due to its higher CL content (20%). All scaffolds showed a gradual loss in their compressive strength and modulus over time as a result of progressive mass loss over time. The manufacturing process utilized and the scaffolds produced have potential for use in tissue engineering and regenerative medicine applications.
The antifouling properties against the simultaneous attack of five different bacteria and the stability of surface tethered poly(2-ethyl-2-oxazoline)s were investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.