Scyphistomae show different modes of propagation, occasionally allowing the sudden release of great numbers of medusae through strobilation leading to so-called jellyfish blooms. Accordingly, factors regulating asexual reproduction strategies will control scyphistoma density, which, in turn, may influence blooming potential. We studied 11 scyphistoma species in 6 combinations of temperature and food supply to test the effects of these factors on asexual reproduction strategies and reproduction rates. Temperature and food availability increased reproduction rates for all species and observed reproduction modes. In all cases, starvation was the most important factor constraining the asexual reproduction of scyphistomae. Differences in scyphistoma density were found according to the reproductive strategy adopted by each species. Different Aurelia lineages and Sanderia malayensis presented a multi-mode strategy, developing up to 5 propagation modes. These species reached the highest densities, mostly through lateral budding and stolons. Cassiopea sp., Cephea cephea, Mastigias papua and Phyllorhiza punctata adopted a mono-mode reproductive strategy, developing only free-swimming buds. Lychnorhiza lucerna, Rhizostoma pulmo and Rhopilema esculentum also presented a mono-mode strategy, but they only developed podocysts. These 3 species had the lowest reproduction rates and polyp densities; not only their reproduction rates but also the need for a 2-fold set of environmental stimuli to produce new polyps (one for encystment, another for excystment) made this reproduction mode the slowest of those observed to be utilized for propagation. We conclude that blooms may be defined phylogenetically by the specific asexual modes each species develops, which, in turn, is regulated by environmental conditions.
Some of the most interesting and enigmatic cnidarians are classified within the hydrozoan subclass Trachylina. Despite being relatively depauperate in species richness, the clade contains four taxa typically accorded ordinal status: Actinulida, Limnomedusae, Narcomedusae and Trachymedusae. We bring molecular data (mitochondrial 16S and nuclear small and large subunit ribosomal genes) to bear on the question of phylogenetic relationships within Trachylina. Surprisingly, we find that a diminutive polyp form, Microhydrula limopsicola (classified within Limnomedusae) is actually a previously unknown life stage of a species of Stauromedusae. Our data confirm that the interstitial form Halammohydra sp. (Actinulida) is derived from holopelagic direct developing ancestors, likely within the trachymedusan family Rhopalonematidae. Trachymedusae is shown to be diphyletic, suggesting that the polyp stage has been lost independently at least two times within trachyline evolution. Narcomedusae is supported as a monophyletic group likely also arising from trachymedusan ancestors. Finally, some data, albeit limited, suggest that some trachyline species names refer to cryptic species that have yet to be sorted taxonomically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.