Due to the unprecedented rapid increase of their power conversion efficiency, hybrid organic-inorganic perovskites CH 3 NH 3 PbX 3 (X = I, Br, Cl) can potentially revolutionize the world of solar cells. However, despite tremendous research activity, the origin of the exceptionally large diffusion length of their photogenerated charge carriers, that is, their low recombination rate, remains elusive. Using frequency and temperature-dependent dielectric measurements across the entire frequency spectrum, it is shown that the dielectric constant conserves very high values (>27) for frequencies below 1 THz in all three halides. This efficiently prevents photocarrier trapping and their recombination owing to the strong screening of charged entities. By combining ultrasonic and Raman spectroscopy with dielectric analysis, similarly large contributions to the dielectric constant are attributed to the dipolar disorder of the CH 3 NH 3 + cations as well as lattice dynamics in the gigahertz range yielding dielectric constants of ε stat = 62 for the iodide, 58 for the bromide, and about 45 for the chloride below 1 GHz at room temperature. Disorder continuously reduces for decreasing temperature. Dipole dynamics prevail in the intermediate tetragonal phase. The low-temperature orthorhombic state is antipolar. No indications of ferroelectricity are found.
Clues to designing highly efficient organic solar cells may lie in understanding the architecture of light-harvesting systems and exciton energy transfer (EET) processes in very efficient photosynthetic organisms. Here, we compare the kinetics of excitation energy tunnelling from the intact phycobilisome (PBS) light-harvesting antenna system to the reaction center in photosystem II in intact cells of the cyanobacterium Acaryochloris marina with the charge transfer after conversion of photons into photocurrent in vertically aligned carbon nanotube (va-CNT) organic solar cells with poly(3-hexyl)thiophene (P3HT) as the pigment. We find that the kinetics in electron hole creation following excitation at 600 nm in both PBS and va-CNT solar cells to be 450 and 500 fs, respectively. The EET process has a 3 and 14 ps pathway in the PBS, while in va-CNT solar cell devices, the charge trapping in the CNT takes 11 and 258 ps. We show that the main hindrance to efficiency of va-CNT organic solar cells is the slow migration of the charges after exciton formation.
The synthesis and characterization of gas phase oxygen- and nitrogen-functionalized multi-walled carbon nanotubes (OMWCNTs and NMWCNTs) and the dispersibility of these tubes in organic solvents were investigated. Recently, carbon nanotubes have shown supreme capacity to effectively enhance the efficiency of organic solar cells (OSCs). A critical challenge is to individualize tubes from their bundles in order to provide homogenous nano-domains in the active layer of OSCs. OMWCNTs and NMWCNTs were synthesized via HNO3 vapor and NH3 treatments, respectively. Surface functional groups and the structure of the tubes were analyzed by temperature-programmed desorption, Fourier transform infrared spectroscopy, transmission electron microscopy, and Raman spectroscopy which confirmed the formation of functional groups on the tube surface and the enhancement of surface defects. Elemental analysis demonstrated that the oxygen and nitrogen content increased with increasing treatment time of the multi-walled carbon nanotube (MWCNT) in HNO3 vapor. According to ultra-violet visible spectroscopy, modification of the MWCNT increased the extinction coefficients of the tubes owing to enhanced compatibility of the functionalized tubes with organic matrices.
Charge carriers in methylammonium lead perovskite solar cell absorbers assume a combined (hyper‐) polaronic state combining a classical Fröhlich polaron with a micelle‐like arrangement of electric dipoles formed by the methylammonium ions. This “micellion” provides an extra contribution to the dielectric constant which screens defects but maintains mobility of the polaron. This is reported by Doru C. Lupascu and co‐workers in article number https://doi.org/10.1002/aenm.201700600. In the image, the structure of the hyperpolaron is shown.
X-ray detectors based on metal-oxide semiconductor field effect transistors couple instantaneous measurement with high accuracy. However, they only have a limited measurement lifetime because they undergo permanent degradation due to x-ray beam exposure. A field effect transistor based on carbon nanotubes (CNTs), however, overcomes this drawback of permanent degradation, because it can be reset into its starting state after being exposed to the x-ray beam. In this work the CNTs were deposited using a dielectrophoresis method on SiO coated p-type (boron-doped) Si substrates. For the prepared devices a best gate voltage shift of 244 V Gy and a source-drain current sensitivity of 382 nA Gy were achieved. These values are larger than those reached by the currently used MOSFET based devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.