Polycyclic aromatic hydrocarbons (PAHs) are of considerable concern due to their well-recognised toxicity and especially due to the carcinogenic hazard which they present. PAHs are semi-volatile and therefore partition between vapour and condensed phases in the atmosphere and both the vapour and particulate forms undergo chemical reactions. This article briefly reviews the current understanding of vapour-particle partitioning of PAHs and the PAH deposition processes, and in greater detail, their chemical reactions. PAHs are reactive towards a number of atmospheric oxidants, most notably the hydroxyl radical, ozone, the nitrate radical (NO3) and nitrogen dioxide. Rate coefficient data are reviewed for reactions of lower molecular weight PAH vapour with these species as well as for heterogeneous reactions of higher molecular weight compounds. Whereas the data for reactions of the 2-3-ring PAH vapour are quite extensive and generally consistent, such data are mostly lacking for the 4-ring PAHs and the heterogeneous rate data (5 and more rings), which are dependent on the substrate type and reaction conditions, are less comprehensive. The atmospheric reactions of PAH lead to the formation of oxy and nitro derivatives, reviewed here, too. Finally, the capacity of PAHs for long range transport and the results of numerical model studies are described. Research needs are identified.
Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epidemiological exposure-response functions indicates that ambient air pollution causes more than four million premature deaths per year. Epidemiological studies usually refer to PM mass concentrations, but some health effects may relate to specific constituents such as bioaerosols, polycyclic aromatic compounds, and transition metals. Various analytical techniques and cellular and molecular assays are applied to assess the redox activity of PM and the formation of reactive oxygen species. Multiphase chemical interactions of lung antioxidants with atmospheric pollutants are crucial to the mechanistic and molecular understanding of oxidative stress upon respiratory deposition. The role of distinct PM components in health impacts and mortality needs to be clarified by integrated research on various spatiotemporal scales for better evaluation and mitigation of aerosol effects on public health in the Anthropocene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.