Axon growth across the Drosophila midline requires Comm to downregulate Robo, the receptor for the midline repellent Slit. We show here that comm is required in neurons, not in midline cells as previously thought, and that it is expressed specifically and transiently in commissural neurons. Comm acts as a sorting receptor for Robo, diverting it from the synthetic to the late endocytic pathway. A conserved cytoplasmic LPSY motif is required for endosomal sorting of Comm in vitro and for Comm to downregulate Robo and promote midline crossing in vivo. Axon traffic at the CNS midline is thus controlled by the intracellular trafficking of the Robo guidance receptor, which in turn depends on the precisely regulated expression of the Comm sorting receptor.
To facilitate the investigation of glial development inDrosophila, we present a detailed description of theDrosophila glial cells in the ventral nerve cord. A GAL4 enhancer-trap screen for glial-specific expression was performed. Using UAS-lacZ and UAS-kinesin-lacZ as reporter constructs, we describe the distribution and morphology of the identified glial cells in the fully differentiated ventral nerve cord of first-instar larvae just after hatching. The three-dimensional structure of the glial network was reconstructed using a computer. Using the strains with consistent GAL4 expression during late embryogenesis, we traced back the development of the identified cells to provide a glial map at embryonic stage 16. We identify typically 60 (54-64) glial cells per abdominal neuromere both in embryos and early larvae. They are divided into six subtypes under three categories: surface-associated glia (16-18 subperineurial glial cells and 6-8 channel glial cells), cortex-associated glia (6-8 cell body glial cells), and neuropile-associated glia (8-10 nerve root glial cells, 14-16 interface glial cells, and 3-4 midline glial cells). The proposed glial classification system is discussed in comparison with previous insect glial classifications.
The Drosophila brain develops from the procephalic neurogenic region of the ectoderm. About 100 neural precursor cells (neuroblasts)delaminate from this region on either side in a reproducible spatiotemporal pattern. We provide neuroblast maps from different stages of the early embryo(stages 9, 10 and 11, when the entire population of neuroblasts has formed),in which about 40 molecular markers representing the expression patterns of 34 different genes are linked to individual neuroblasts. In particular, we present a detailed description of the spatiotemporal patterns of expression in the procephalic neuroectoderm and in the neuroblast layer of the gap genes empty spiracles, hunchback, huckebein, sloppy paired 1 and tailless; the homeotic gene labial; the early eye genes dachshund, eyeless and twin of eyeless; and several other marker genes (including castor, pdm1, fasciclin 2, klumpfuss, ladybird,runt and unplugged). We show that based on the combination of genes expressed, each brain neuroblast acquires a unique identity, and that it is possible to follow the fate of individual neuroblasts through early neurogenesis. Furthermore, despite the highly derived patterns of expression in the procephalic segments, the co-expression of specific molecular markers discloses the existence of serially homologous neuroblasts in neuromeres of the ventral nerve cord and the brain. Taking into consideration that all brain neuroblasts are now assigned to particular neuromeres and individually identified by their unique gene expression, and that the genes found to be expressed are likely candidates for controlling the development of the respective neuroblasts, our data provide a basic framework for studying the mechanisms leading to pattern and cell diversity in the Drosophilabrain, and for addressing those mechanisms that make the brain different from the truncal CNS.
Drosophila is an ideal system for identifying genes that control central nervous system (CNS) development. Particularly useful tools include molecular markers for subsets of neural precursors (neuroblasts) and the simple expression pattern of the even-skipped (eve) gene in a subset of neurons. Here we provide additional molecular markers for identified neuroblasts, including several with near single cell specificity. In addition, we use these new markers to trace the development of several eve+ neurons. Our results shows that the eve+ aCC/pCC neurons develop from a different neuroblast than previously thought, and have led us to assign new names for several neuroblasts. These results are supported by DiI cell lineage analysis of neuroblasts identified in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.