The variation in beach cusp characteristics was examined along a 1 km long embayed beach (Pearl Beach, New South Wales, Australia). The beach cusp morphology had formed during the previous day and/or night and displayed a marked alongshore variation in cusp spacing. The edge wave mechanism of beach cusp formation could not account for the observed trend in cusp spacing, because no relationship could be established between the spacing of the cusps and the gradient of the beachface. On the other hand, the cusp spacing was strongly related to the horizontal swash excursion, providing some support for the self-organization model of beach cusp formation.
The process-based XBeach numerical model has been used to simulate storm-induced morphological response on a macrotidal gravel barrier located in southwest UK. Using well-established parameterisation to define all relevant hydrodynamic, groundwater and sediment processes, the model was applied in 1D mode to simulate observed storminduced beach profile responses. Investigations showed that the morphological response of the beach was best modelled using a total drag coefficient, CD, of 0.007, and a hydraulic conductivity, K, of 0.05ms -1 . Results obtained from simulations with and without beach groundwater highlighted the need to account for groundwater effects when modelling morphological changes on gravel beaches. The model has been found unable of reproducing the formation of a berm, thus, beach recovery conditions cannot be modelled. This is mainly attributed to the fact that XBeach models long waves rather than individual waves, and thus it cannot simulate individual swash events that contribute to onshore sediment transport and berm accretion. However, the model is shown to provide good estimates of post-storm gravel beach/barrier profiles, and to define the threshold for overwash occurrence. Both attributes have utility in a range of practical coastal engineering and management applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.