The power control of wind turbines is usually realized via a change in the pitch angle of the rotor blades. Pitching facilitates the exact control of the turbines and the reliable deceleration of the rotor when required. Pitch movements can moreover be used for load control. One of these methods is called individual pitch control (IPC). IPC controls the blades individually and brings about a significant reduction in the fatigue loads and extreme loads placed on the structural components, while at the same time reducing the yield of the turbine only slightly. The lower loads reduce material costs, and thus, the cost of energy (CoE) is reduced, despite the slight reduction in yield. The method is nevertheless not used everywhere since the additional movement cycles put the rotor blade bearings in particular under stress. Special attention must be paid to small amplitude oscillating movements, which carry a high risk of inducing surface damage in the rolling contacts of the blade bearings. This paper uses a cycle analysis of the IWT7.5-164 reference turbine to illustrate the differences in the movement patterns of wind turbine blade bearings with and without IPC. Moreover, model calculations with single contacts are used to show which of the movement patterns carries a risk of inducing surface damage. The use of IPC leads to the expected load reduction at the blade root. In current literature, IPC is usually assumed to have a negative influence on the life expectancy of blade bearings, but the findings of this study contradict this. The summed blade bearing movement is increased, although the number of very small pitch angles occurring is reduced. This reduction reduces the risk of wear in the blade bearings.
Motor bearings in industrial converter-fed threephase motors are mostly equipped with grease-lubricated roller bearings. It is known that under certain operating conditions bearing currents flow that can damage the bearings. When estimating the danger of damaging bearing currents it is important to look at the thickness and the capacitance of the lubricant film as well as the electrical parameters of the drive system. Calculating the thickness of the lubricant film for grease-lubricated bearings is problematical. This paper discusses how this quantity can be determined based on the bearing capacitance. After a brief introduction into the theory of lubricant film formation, the results of extensive tests are presented regarding the dependency of the bearing capacitance on temperature and speed.
In recent years, graphene-based lubrication was in the focus of nano- and microtribological studies. While the sliding properties of graphene based dry lubrication were previously investigated on the nano- and micro-scale, few studies can be found in the literature for the application of graphene as an additive to oil and grease in rolling contacts. In order to apply graphene platelets as dry lubricants and as grease additives in machine elements, tests were carried out on a rolling bearing test rig under typical load conditions. For these investigations, multilayer graphene platelets of varied staple thickness were functionalized on angular contact ball bearing surfaces as a dry lubricant, which forms a thin film. In addition, bearings were lubricated with grease containing graphene platelets. In this case, a small ratio of graphene was dispersed with grease. The graphene platelets were divided into three groups of different thickness: 2 nm, 6–8 nm, and 11–15 nm. Additionally, the tests were compared to graphite nanoparticles (spheres with a size of 3–4 nm) as dry lubricant and graphite-containing grease. The experimental studies were carried out under oscillating motion. The respective load in the tribological contact was 1.5 GPa. During the tests, the pivoting angle was measured by utilizing a rotary encoder. In addition, the friction torque was recorded under a frequency of 0.2 Hz. As the balls’ velocity at the reversal point is zero, the lubrication conditions are critical. The dry lubricated bearings were compared to grease lubricated bearings. Additionally, the frictional properties of the respective greases were investigated by applying a sliding tribometer. In this case, a ball rotates against three contact planes, which causes a tribological contact under a contact pressure of 1 GPa. It was shown that applying graphene as a dry lubricant and as a grease additive under rolling contact conditions reduces friction significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.