The analgesic effect and adverse events of the weak opioid codeine is assumed to be mediated by its metabolite morphine. The cytochrome P-450 enzyme CYP2D6 catalysing the formation of morphine exhibits a genetic polymorphism. Two distinct phenotypes, the extensive (EMs) and poor metabolisers (PMs), are present in the population. The prevalence of PMs in the Caucasian population is 7% to 10%. Since PMs do not express functional CYP2D6, they have a severely impaired capacity to metabolise drugs which are substrates of this enzyme. Provided the analgesic effect and the adverse events of codeine are mediated by its metabolite morphine, large phenotype-related differences are to be expected and PMs, as they form only trace amounts of morphine, can serve as a model to test the hypothesis whether the analgesia and adverse events of codeine are mediated by the parent drug or its metabolite morphine. Therefore we have studied in a randomised placebo-controlled double-blind trial the analgesic effect of 170 mg codeine (p.o.) compared to 20 mg morphine (p.o.) and placebo in 9 EMs and 9 PMs using the cold pressor test. The duration and intensity of the side effects were assessed using visual analogue scales (VAS). Codeine and morphine concentrations were measured in serum and urine. Compared to placebo, 20 mg morphine caused a significant increase in pain tolerance in both phenotypes, EMs and PMs (16.2+/-27.4 vs. -0.66+/-27.4 s x h, n=18). However, following administration of codeine, analgesia was only observed in EMs but not in PMs (EMs: 54.9+/-42.2 vs. 1.7+/-4.2 s x h, P < 0.01; PMs: 9.6+/-10.9 vs. 3.3+/-23.7 s x h, not significant). Adverse events were significantly more pronounced after morphine and codeine compared to placebo in both EMs and PMs. In contrast to the phenotype-related differences in the analgesic effect of codeine, however, no difference in adverse events between the phenotypes could be observed. In the pharmacokinetic studies, significant differences between the two phenotypes in the formation of morphine after codeine administration could be observed. Whereas morphine plasma concentrations were similar in PMs (Cmax: 44+/-13 nmol/l: AUC: 199+/-45 nmol x h/l) and EMs (Cmax: 48+/-17 nmol/l); AUC: 210+/-65 nmol x h/l) after morphine administration, following 170 mg codeine, morphine plasma concentrations comparable to those after morphine application were only observed in EMs (Cmax: 38+/-16 nmol/l; AUC: 173+/-90 nmol x h/l). In PMs only traces of morphine could be detected in plasma (Cmax: 2+/-1 nmol/l; AUC: 10+/-7 nmol x h/l). The percentage of the codeine dose converted to morphine and its metabolites was 3.9% in EMs and 0.17% in PMs. The interindividual variability in analgesia of codeine which is related to genetically determined differences in the formation of morphine clearly indicate that this metabolite is responsible for the analgesic effect of codeine. In contrast to the analgesic effect, frequency and intensity of the adverse events did not present significant differences between the two phenoty...
Methadone withdrawal symptoms have been reported in drug addicts treated with the tuberculostatic rifampin. Whereas this interaction can be explained by induction of phase I drug metabolism (CYP3A4), knowledge about induction of phase II metabolism (e.g., UDP-glucuronosyltransferases = UGTs) and its influence on drug effects in man, however, is very limited. The potent analgesic morphine is metabolized by more than one UGT to the active metabolite morphine-6-glucuronide and to morphine-3-glucuronide, which is devoid of analgesic activity. Thus, differential induction of UGTs involved in metabolism of morphine might lead to decreased or increased analgesic effects, depending on which UGT is preferentially induced. We therefore investigated the influence of the potent enzyme inducer rifampin on analgesic effects and pharmacokinetics of morphine, which is primarily eliminated by phase II metabolism. Ten healthy male volunteers participated in this double-blind, placebo-controlled study with double crossover design. Morphine (10 mg p.o.) and placebo were administered on two separate occasions before and near the end of 13 days of treatment with rifampin (600 mg/day). Blood samples were collected for 31 h. Morphine effects on pain sensation were determined using the cold pressor test. When morphine was given alone, the opioid elicited a significant increase in pain threshold and pain tolerance in comparison to placebo (P < or = 0.05). However, following administration of rifampin no analgesic effect of morphine was observed. In agreement, the area under the serum concentration-time curve (AUC) of morphine and the maximum serum concentration of morphine were considerably reduced during coadministration of rifampin (-27.7 +/- 19.3% and -40.7 +/- 27.1%; P < or = 0.01). Moreover, during treatment with rifampin a proportional reduction of AUCs of morphine-3-glucuronide (P < or = 0.01), morphine-6-glucuronide (P < or = 0.05) and morphine was observed. Since urinary recoveries of both morphine-3-glucuronide and morphine-6-glucuronide were also reduced during administration of rifampin, there is no evidence for a contribution of UGT induction to the observed interaction. In summary, a major drug interaction was observed between morphine and rifampin, which could not be attributed to induction of UGTs, but resulted in a complete loss of analgesic effects of the opioid.
In vitro models based on primary human hepatocytes (PHH) have been advanced for clearance (CL) prediction of metabolically stable compounds, representing state-of-the-art assay systems for drug discovery and development. Yet, limited cell availability and large interindividual variability of metabolic profiles remain shortcomings of PHH. Upcyte human hepatocytes (UHH) represent a novel hepatic cell system derived from PHH, exhibiting proliferative capacity for approximately 35 population doublings. UHH from three donors were evaluated during culture for up to 18 days, investigating relative mRNA expression and in situ enzyme activity of cytochrome P450s (P450s), UDP-glucuronosyltransferases, and sulfotransferases. Furthermore, UHH were used for predicting hepatic CL of 21 marketed low to intermediate CL drugs. In a typical experiment, expansion from 3.9 3 10 6 up to 8.5 3 10 7 cells was achieved during subculture.When maintained at confluence, transcripts of major P450s were expressed at donor-specific levels with sustained activities for the majority of isoforms, showing generally low CYP1A2 and high CYP2B6 activity levels. For donor 151-03, CL prediction based on depletion experiments resulted in an average fold error of 2.0, and 80% of compounds being predicted within twofold to in vivo CL for a subset of 10 low CL drugs. UHH showed sustained and consistent activity of drug-metabolizing enzymes (DME), resulting in highly reproducible CL prediction performance. In conclusion, UHH show promising potential as alternative to PHH for standardized in vitro applications in discovery research based on their stable, hepatocytelike DME phenotype and virtually unlimited cell availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.