Abstract--Aqueous acetone extracts of shoots of Eurasian watermilfoil (Myriophyllum spicatum) exhibit a strong inhibitory action against various coccoid and filamentous cyanobacteria and to a slightly less extent against chlorophytes and diatoms. Bioassay-directed fractionation led to the isolation of a hydrolysable polyphenol, tellimagrandin II, which turned out to be the main inhibitory substance. Myriophyllum spicatum contains large amounts of this compound (1.5 % of dry wt). Part of the inhibitory activity is due to complexation and inactivation of algal extracellular enzymes (e.g. alkaline phosphatase) by hydrolysable polyphenols from M. spicatum.
Two relatively new ambient ionization sources, direct analysis in real time (DART) and the flowing atmospheric-pressure afterglow (FAPA), use direct current, atmospheric-pressure discharges to produce reagent ions for the direct ionization of a sample. Although at a first glance these two sources appear similar, a fundamental study reveals otherwise. Specifically, DART was found to operate with a corona-to-glow transition (C-G) discharge whereas the FAPA was found to operate with a glow-to-arc transition (G-A) discharge. The characteristics of both discharges were evaluated on the basis of four factors: reagent-ion production, response to a model analyte (ferrocene), infrared (IR) thermography of the gas used for desorption and ionization, and spatial emission characteristics. The G-A discharge produced a greater abundance and a wider variety of reagent ions than the C-G discharge. In addition, the discharges yielded different adducts and signal strengths for ferrocene. It was also found that the gas exiting the discharge chamber reached a maximum of 235°C and 55°C for the G-A and C-G discharges, respectively. Finally, spatially resolved emission maps of both discharges showed clear differences for N 2 ϩ and O(I). These findings demonstrate that the discharges used by FAPA and DART are fundamentally different and should have different optimal applications for ambient desorption/ionization mass spectrometry (ADI-MS). irect-current (DC) discharges have been widely used for elemental analyses since they were first introduced for alloy characterization [1]. When DC discharges were coupled with mass spectrometry, the result was a very sensitive and powerful tool for elemental [1] and molecular analyses [2,3]. Of the many electrical regimes of DC discharges, three forms have been found to have particular analytical merit: the arc, the glow, and the corona. Among these three types of discharges, the fundamental distinction is the operating current and voltage. The arc occurs at very high currents (hundreds of amperes) with a low voltage drop between electrodes (tens of volts). It also exhibits negative resistance; that is, the sustaining voltage drops as the current rises. The glow discharge (GD), which has conventionally been operated between 0.1 to 10 Torr, exists at much lower currents (tens of milliamperes) and a higher voltage drop (hundreds of volts). Lastly, the corona discharge operates with very low currents (a few microamperes) and a much higher voltage drop (several kilovolts).Corona discharges find their most common analytical application in atmospheric pressure chemical ionization (APCI) [4,5]. In conventional APCI, a corona discharge is formed by applying ϳ4 kV to a needle electrode in a selected atmosphere, to yield currents of ϳ5 A. After a series of reactions [5], reagent ions are produced that can then ionize a sample. Protonated water clusters are typically observed because of the presence of water vapor in the air. Such protonated clusters promote proton transfer ionization, resulting in mass spect...
In mass spectrometry, several advantages can be derived when multiple mass-to-charge values are detected simultaneously and continuously. One such advantage is an improved duty cycle, which leads to superior limits of detection, better precision, shorter analysis times, and reduced sample sizes. A second advantage is the ability to reduce correlated noise by taking the ratio of two or more simultaneously collected signals, enabling greatly enhanced isotope ratio data. A final advantage is the elimination of spectral skew, leading to more accurate transient signal analysis. Here, these advantages are demonstrated by means of a novel Faraday-strip array detector coupled to a Mattauch-Herzog mass spectrograph. The same system is used to monitor elemental fractionation phenomena in laser ablation inductively coupled plasma mass spectrometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.