This paper presents data concerning auditory evoked responses in the middle latency range (wave Pam/ Pa) and slow latency range (wave Nlm/Nl) recorded from 12 subjects. It is the first group study to report multi-channel data of both MEG and EEG recordings from the human auditory cortex. The experimental procedure involved potential and current density topographical brain mapping as well as magnetic and electric source analysis. Responses were compared for the following 3 stimulus frequencies: 500, 1000 and 4000 Hz. It was found that two areas of the auditory cortex showed mirrored tonotopic organization; one area, the source of Nlm/Nl wave, exhibited higher frequencies at progressively deeper locations, while the second area, the source of the Pam/Pa wave, exhibited higher frequencies at progressively more superficial locations. The Pa tonotopic map was located in the primary auditory cortex anterior to the Nlm/Nl mirror map. It is likely that Nlm/Nl results from activation of secondary auditory areas. The location of the Pa map in AI, and its NI mirror image in secondary auditory areas is in agreement with observations from animal studies.
Fibromyalgia (FM), among other chronic pain syndromes, such as chronic tension type headache and atypical face pain, is classified as a so-called dysfunctional pain syndrome. Patients with fibromyalgia suffer from widespread, "deep" muscle pain and often report concomitant depressive episodes, fatigue and cognitive deficits. Clear evidence for structural abnormalities within the muscles or soft tissue of fibromyalgia patients is lacking. There is growing evidence that clinical pain in fibromyalgia has to be understood in terms of pathological activity of central structures involved in nociception. We applied MR-imaging and voxel-based morphometry, to determine whether fibromyalgia is associated with altered local brain morphology. We investigated 20 patients with the diagnosis of primary fibromyalgia and 22 healthy controls. VBM revealed a conspicuous pattern of altered brain morphology in the right superior temporal gyrus (decrease in grey matter), the left posterior thalamus (decrease in grey matter), in the left orbitofrontal cortex (increase in grey matter), left cerebellum (increase in grey matter) and in the striatum bilaterally (increase in grey matter). Our data suggest that fibromyalgia is associated with structural changes in the CNS of patients suffering from this chronic pain disorder. They might reflect either a consequence of chronic nociceptive input or they might be causative to the pathogenesis of fibromyalgia. The affected areas are known to be both, part of the somatosensory system and part of the motor system.
Background and Purpose Cerebral amyloid angiopathy (CAA) is a degenerative disorder characterized by amyloid-β (Aβ) deposition in the blood–brain barrier (BBB). CAA contributes to injuries of the neurovasculature including lobar hemorrhages, cortical microbleeds, ischemia, and superficial hemosiderosis. We postulate that CAA pathology is partially due to Aβ compromising the BBB. Methods We characterized 19 patients with acute stroke with “probable CAA” for neurovascular pathology based on MRI and clinical findings. Also, we studied the effect of Aβ on the expression of tight junction proteins and matrix metalloproteases (MMPs) in isolated rat brain microvessels. Results Two of 19 patients with CAA had asymptomatic BBB leakage and posterior reversible encephalopathic syndrome indicating increased BBB permeability. In addition to white matter changes, diffusion abnormality suggesting lacunar ischemia was found in 4 of 19 patients with CAA; superficial hemosiderosis was observed in 7 of 9 patients. Aβ40 decreased expression of the tight junction proteins claudin-1 and claudin-5 and increased expression of MMP-2 and MMP-9. Analysis of brain microvessels from transgenic mice overexpressing human amyloid precursor protein revealed the same expression pattern for tight junction and MMP proteins. Consistent with reduced tight junction and increased MMP expression and activity, permeability was increased in brain microvessels from human amyloid precursor protein mice compared with microvessels from wild-type controls. Conclusions Our findings indicate that Aβ contributes to changes in brain microvessel tight junction and MMP expression, which compromises BBB integrity. We conclude that Aβ causes BBB leakage and that assessing BBB permeability could potentially help characterize CAA progression and be a surrogate marker for treatment response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.