Biochars are increasingly used as soil amendment and for C sequestration in soils. The influence of feedstock differences and pyrolysis temperature on biochar characteristics has been widely studied. However, there is a lack of knowledge about the formation of potentially toxic compounds that remain in the biochars after pyrolysis. We investigated biochars from three feedstocks (wheat straw, poplar wood, and spruce wood) that were slowly pyrolyzed at 400, 460, and 525°C for 5 h (straw) and 10 h (woodchips), respectively. We characterized the biochars' pH, electrical conductivity, elemental composition (by dry combustion and X-ray fluorescence), surface area (by N adsorption), water-extractable major elements, and cation exchange capacity (CEC). We further conducted differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffractometry to obtain information on the biochars' molecular characteristics and mineralogical composition. We investigated trace metal content, total polycyclic aromatic hydrocarbon (PAH) content, and PAH composition in the biochars. The highest salt (4.92 mS cm) and ash (12.7%) contents were found in straw-derived biochars. The H/C ratios of biochars with highest treatment temperature (HTT) 525°C were 0.46 to 0.40. Surface areas were low but increased (1.8-56 m g) with increasing HTT, whereas CEC decreased (162-52 mmol kg) with increasing HTT. The results of DSC and FTIR suggested a loss of labile, aliphatic compounds during pyrolysis and the formation of more recalcitrant, aromatic constituents. X-ray diffractometry patterns indicated a mineralogical restructuring of biochars with increasing HTT. Water-extractable major and trace elements varied considerably with feedstock composition, with trace elements also affected by HTT. Total PAH contents (sum of EPA 16 PAHs) were highly variable with values up to 33.7 mg kg; irrespective of feedstock type, the composition of PAHs showed increasing dominance of naphthalene with increasing HTT. The results demonstrate that biochars are highly heterogeneous materials that, depending on feedstock and HTT, may be suitable for soil application by contributing to the nutrient status and adding recalcitrant C to the soil but also potentially pose ecotoxicological challenges.
Biochar (BC) application as a soil amendment has aroused much interest and was found to considerably improve soil nutrient status and crop yields on poor, tropical soils. However, information on the effect of BC on temperate soils is still insufficient, with effects expected to differ from tropical soils. We investigated the effects of BC on soil nutrient dynamics, crop yield, and quality in a greenhouse pot experiment. We compared three agricultural soils (Planosol, Cambisol, Chernozem), and BCs of three different feedstocks (wheat straw [WS], mixed woodchips [WC], vineyard pruning [VP]) slowly pyrolyzed at 525°C, of which the latter was also pyrolyzed at 400°C. The BCs were applied at two rates (1% and 3%, which would correspond to 30 and 90 t ha–1 in the field). Three crops, namely mustard (Sinapis alba L.), barley (Hordeum vulgare L.), and red clover (Trifolium pretense L.) were grown successively within one year. The investigated soil properties included pH, electrical conductivity (EC), cation‐exchange capacity (CEC), calcium‐acetate‐lactate (CAL)–extractable P (PCAL) and K (KCAL), C, N, and nitrogen‐supplying potential (NSP). The results show a pH increase in all soils. The CEC increased only on the Planosol. The C : N ratio increased at 3% application rate. Despite improving the soil nutrient status partly, yields of the first crop (mustard) and to a lesser extent of the second crop (barley) were significantly depressed through BC application (by up to 68%); the yield of clover as third crop was not affected. Only the BC from WS maintained yields in the range of the control and even increased barley yield by 6%. The initial yield reduction was accompanied by notable decreases (Cu, Fe, Mn, Zn) and increases (Mo) in micronutrient concentrations of plant tissues while nitrogen concentrations were hardly affected. The results of the pot experiment show that despite additional mineral fertilization, short‐term growth inhibition may occur when applying BC without further treatment to temperate soils.
Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50–80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.