The need for load flexibility and increased efficiency of energy-intensive processes has become more and more important in recent years. Control of the process variables plays a decisive role in maximizing the efficiency of a plant. The widely used control models of linear model predictive controllers (LMPC) are only partly suitable for nonlinear processes. One possibility for improvement is machine learning. In this work, one approach for a purely data-driven controller based on reinforcement learning is explored at an air separation plant (ASU) in productive use. The approach combines the model predictive controller with a data-generated nonlinear control model. The resulting controller and its control performance are examined in more detail on an ASU in real operation and compared with the previous LMPC solution. During the tests, stable behavior of the new control concept could be observed for several weeks in productive operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.