The north-western part of South Africa, in particular, is well known for mineral imbalances. Aphosphorosis, resulting in rickets and osteomalacia, received a lot of attention at the turn of the nineteenth century (1882–1912). This was followed in 1997 by research on Vryburg hepatosis, another area-specific mineral imbalance–related disease in young calves reared on manganese-rich soil derived from the weathering of dolomitic (carbonate) rock formations. In 1982, a totally new syndrome (osteochondrosis) manifested in, amongst others, areas in South Africa where aphosphorosis was rife. Osteochondrosis was also identified in the south-western parts of Namibia as well as southern Botswana and other areas in South Africa. Osteochondrosis has a multifactorial aetiology and this study focused on the role of minerals, particularly phosphorus, in the development of the disease. A significant improvement in the clinical signs in experimental animals and a reduction of osteochondrosis occurred on farms where animals received bioavailable trace minerals and phosphorus as part of a balanced lick. An increase in the occurrence of the disease on farms during severe drought conditions in 2012–2013 prompted researchers to investigate the possible role of chronic metabolic acidosis in the pathogenesis of the disease.
Since 1982, farmers in the North West province and other parts of South Africa have noticed an increase in the incidence of lameness in cattle. Macro- and microscopical lesions of joints resembled osteochondrosis. Pre-trial data indicated that cattle with osteochondrotic lesions recovered almost completely when fed a supplement containing bio-available micro- and macrominerals of high quality. In the present trial, 43 clinically affected cattle of varying ages (1–5 years) and sexes were randomly divided into three groups. Each group was fed the same commercial supplement base with differing micro- and macromineral concentrations to determine the effect of mineral concentrations on the recovery from osteochondrosis. Both supplements 1 and 2 contained 25% of the recommended National Research Council (NRC) mineral values. Additional phosphate was added to supplement 2. Supplement 3, containing 80% of the NRC mineral values, was used as the control. Results from all three groups indicated no recovery from osteochondrosis. Urine pH of a small sample of the test cattle showed aciduria (pH < 6). Supplement analysis revealed addition of ammonium sulphate that contributed sulphate and nitrogen to the supplement. Supplementary dietary cation anion difference (DCAD) values were negative at -411 mEq/kg, -466 mEq/kg and -467 mEq/kg for supplements 1, 2 and 3, respectively, whereas the pre-trial supplement was calculated at +19.87 mEq/kg. It was hypothesised that feeding a low (negative) DCAD diet will predispose growing cattle to the development of osteochondrosis or exacerbate subclinical or clinical osteochondrosis in cattle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.