BackgroundOrthogonal polarized spectral (OPS) and sidestream dark field (SDF) imaging video microscope devices were introduced for observation of the microcirculation but, due to technical limitations, have remained as research tools. Recently, a novel handheld microscope based on incident dark field illumination (IDF) has been introduced for clinical use. The Cytocam-IDF imaging device consists of a pen-like probe incorporating IDF illumination with a set of high-resolution lenses projecting images on to a computer controlled image sensor synchronized with very short pulsed illumination light. This study was performed to validate Cytocam-IDF imaging by comparison to SDF imaging in volunteers.MethodsThis study is a prospective, observational study. The subjects consist of 25 volunteers.ResultsSublingual microcirculation was evaluated using both techniques. The main result was that Cytocam-IDF imaging provided better quality images and was able to detect 30% more capillaries than SDF imaging (total vessels density Cytocam-IDF: 21.60 ± 4.30 mm/mm2 vs SDF: 16.35 ± 2.78 mm/mm2, p < 0.0001). Comparison of the images showed increased contrast, sharpness, and image quality of both venules and capillaries.ConclusionsCytocam-IDF imaging detected more capillaries and provided better image quality than SDF imaging. It is concluded that Cytocam-IDF imaging may provide a new improved imaging modality for clinical assessment of microcirculatory alterations.Electronic supplementary materialThe online version of this article (doi:10.1186/s40635-015-0040-7) contains supplementary material, which is available to authorized users.
Objectives: Reliable automated handheld vital microscopy image sequence analysis and the identification of disease states and effects of therapy are prerequisites for the routine use of quantitative sublingual microcirculation measurements at the point-of-care. The present study aimed to clinically validate the recently introduced MicroTools software in a large multicentral database of perioperative and critically ill patients and to use this automatic algorithm to data-mine and identify the sublingual microcirculatory variable changes in response to disease and therapy. Design: Retrospective algorithm-based image analysis and data-mining within a large international database of sublingual capillary microscopy. Algorithm-based analysis was compared with manual analysis for validation. Thereafter, MicroTools was used to identify the functional microcirculatory alterations associated with disease conditions and identify therapeutic options for recruiting functional microcirculatory variables. Setting: Ten perioperative/ICU/volunteer studies in six international teaching hospitals. Patients: The database encompass 267 adult and pediatric patients undergoing surgery, treatment for sepsis, and heart failure in the ICU and healthy volunteers. Interventions: Perioperative and ICU standard of care. Measurements and Main Results: One thousand five hundred twenty-five handheld vital microscopy image sequences containing 149,257 microscopy images were analyzed. 3.89 × 1012 RBC positions were tracked by the algorithm in real time, and offline manual analysis was performed. Good correlation and trending ability were found between manual and automatic total and functional capillary density (r = 0.6–0.8; p < 0.0001). RBC tracking within the database demonstrated changes in functional capillary density and/or RBC velocity in septic shock, heart failure, hypovolemia, obstructive shock, and hemodilution and thus detected the presence of a disease condition. Therapies recruiting the microcirculatory diffusion and convection capacity associated with systemic vasodilation and an increase in cardiac output were separately identified. Conclusions: Algorithm-based analysis of the sublingual microcirculation closely matched manual analysis across a broad spectrum of populations. It successfully identified a methodology to quantify microcirculatory alterations associated with disease and the success of capillary recruitment, improving point-of-care application of microcirculatory-targeted resuscitation procedures.
BackgroundHemodialysis (HD) with ultrafiltration (UF) in chronic renal replacement therapy is associated with hemodynamic instability, morbidity and mortality. Sublingual Sidestream Dark Field (SDF) imaging during HD revealed reductions in microcirculatory blood flow (MFI). This study aims to determine underlying mechanisms.MethodsThe study was performed in the Medical Centre Leeuwarden and the Lithuanian University of Health Sciences. Patients underwent 4-h HD session with linear UF. Nine patients were subject to combinations of HD and UF: 4 h of HD followed by 1 h isolated UF and 4 h HD with blood-volume-monitoring based UF. Primary endpoint: difference in MFI before and after intervention. During all sessions monitoring included blood pressure, heartrate and SDF-imaging. Trial registration number: NCT01396980.ResultsBaseline characteristics were not different between the two centres as within the HD/UF modalities. MFI was not different before and after HD with UF. Total UF did not differ between modalities. Median MFI decreased significantly during isolated UF [2.8 (2.5–2.9) to 2.5 (2.2–2.8), p = 0.03]. Baseline MFI of each UF session was correlated with MFI after the intervention (r s = 0.52, p = 0.006).ConclusionDuring HD with UF or isolated HD we observed no changes in MFI. This indicates that non-flow mediated mechanisms are of unimportance. During isolated UF we observed a reduction in MFI in conjunction with a negative intravascular fluid balance. The correlation between MFI before and after intervention suggests that volume status at baseline is a factor in microvascular alterations. In conclusion we observed a significant decrease of sublingual MFI, related to UF rate during chronic renal replacement therapy.
In this relatively small sample size study microcirculatory blood flow and vascular reactivity did not differ nor change between TTM33 and TTM36.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.