Since the publication of Lindenberg et al., which classified orally administered active pharmaceutical ingredients (APIs) on the 2004 Essential Medicines List (EML) of the World Health Organization according to the Biopharmaceutics Classification System (BCS), various APIs have been added to the EML. In this work, BCS classifications for 16 of the orally administered APIs which were added to the EML after 2004 were determined. To establish a reliable solubility classification for all these compounds, a miniaturized shake-flask method was introduced. This method enables a fast, economical determination of the BCS solubility class while reliably discriminating between "highly soluble" and "not highly soluble" compounds. Nine of the 16 APIs investigated were classified as "highly soluble" compounds, making them potential candidates for an approval of multisource drug products via the BCS-based biowaiver procedure. The choice of dose definition (which currently varies among the guidances pertaining to BCS-based bioequivalence published by various regulatory authorities) had no effect on the solubility classification of any of the 16 substances evaluated. BCS classification of the compounds was then completed using permeability data obtained from the literature. As several APIs decomposed at one or more pH values, a decision tree for determining their solubility was established.
Literature data and results of experimental studies relevant to the decision to allow waiver of bioequivalence studies in humans for the approval of immediate release solid oral dosage forms containing cephalexin monohydrate are presented. Solubility studies were performed in accordance with the current biowaiver guidelines of the Food and Drug Administration, World Health Organization and European Medicines Agency, taking the degradation at some pH values into consideration. Together with solubility and permeability data for cephalexin monohydrate from the literature, it was demonstrated to be a Biopharmaceutics Classification System Class 1 drug. The pharmacokinetic behavior, results of bioequivalence studies published in the literature, as well as the therapeutic uses, potential toxicity and potential excipient effects on bioavailability were also assessed. Cephalexin has a wide therapeutic index and no bioequivalence problems have been reported. Dissolution studies were run under Biopharmaceutics Classification Systemebiowaiver conditions for the pure drug and 2 generic formulations available on the German market. Considering all relevant aspects, it was concluded that a biowaiver-based approval for products containing cephalexin monohydrate as the single active pharmaceutical ingredient is scientifically justified, provided that well-established excipients are used in usual amounts and that both test and reference dosage forms meet the guideline criteria of either "rapidly dissolving" or "very rapidly dissolving."
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.