Isothiocyanates (ITCs) and indoles derived from cruciferous vegetables possess growth-inhibiting and apoptosis-inducing activities in cancer cell lines in vitro. ITCs like sulforaphane (SFN) are cytotoxic, whereas indoles including indole-3-carbinol or its condensation product 3,3'-diindolylmethane (DIM) are acting by cytostatic mechanisms in human colon cancer cell lines. In the present study, we have investigated the impact of defined combinations of SFN and DIM (ratio 1:4, 1:2, 1:1, 2:1 and 4:1) on cell proliferation, cell-cycle progression and apoptosis induction in cultured 40-16 colon carcinoma cells. Calculations of combination effects were based on the method of Chou et al. (1984) Adv. Enzyme Regul., 22, 27-55, and were expressed as a combination index (CI) with CI < 1, CI = 1 or CI > 1 representing synergism, additivity or antagonism, respectively. Interestingly, at a total drug concentration of 2.5 microM, all combinations of SFN and DIM were antagonistic. With increasing concentrations, the antagonistic effect gradually turned into a synergistic interaction at the highest combined cytotoxic concentration of 40 microM. Cell-cycle analyses with SFN:DIM ratios of 1:1, 1:2 and 1:4 and total concentrations between 10 and 25 microM confirmed antagonism at low and additive effects at higher doses. SFN (10 microM) in combination with DIM (10 microM) resulted in strong G(2)/M cell-cycle arrest, which was not observed with either compound alone. Our results indicate that cytotoxic concentrations of SFN:DIM combinations affect cell proliferation synergistically. At low total concentrations (below 20 microM), which are physiologically more relevant, the combined broccoli compounds showed antagonistic interactions in terms of cell growth inhibition. These data stress the need for elucidating mechanistic interactions for better predicting beneficial health effects of bioactive food components.
Sulforaphane (SFN), a cancer chemopreventive compound derived from broccoli, is able to induce cell cycle arrest and apoptosis in various tumor cell lines. Here we show that cell growth inhibition by SFN follows a biphasic pattern: Transient exposure of 40-16 human colon carcinoma cells for up to 6 h resulted in reversible G(2)/M cell cycle arrest and cytostatic growth inhibition even at elevated concentrations, whereas a minimum continuous exposure time of 12 h was necessary for SFN to irreversibly arrest cells in G(2)/M phase and subsequently induce apoptosis. IC(50) values after 12 h of exposure followed by drug-free recovery up to 72 h (6.4-8.1 microM) were indistinguishable from those of chronic exposure for 24 to 72 h (5.4-6.6 microM). Low concentrations of SFN caused a transient decrease in glutathione (GSH) levels followed by GSH induction, which may be related to reversible G(2)/M arrest and cytostatic effects. Depletion of GSH does not seem to play a role in SFN-mediated apoptosis induction. Our data clearly contribute to a better understanding of the kinetics of antiproliferative activity of SFN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.