Aiming at analyzing multimodal or nonconvexly supported distributions through data depth, we introduce a local extension of depth. Our construction is obtained by conditioning the distribution to appropriate depth-based neighborhoods and has the advantages, among others, of maintaining affine-invariance and applying to all depths in a generic way. Most importantly, unlike their competitors, which (for extreme localization) rather measure probability mass, the resulting local depths focus on centrality and remain of a genuine depth nature at any locality level. We derive their main properties, establish consistency of their sample versions, and study their behavior under extreme localization. We present two applications of the proposed local depth (for classification and for symmetry testing), and we extend our construction to the regression depth context. Throughout, we illustrate the results on several datasets, both artificial and real, univariate and multivariate. Supplementary materials for this article are available online.
We introduce a class of depth-based classification procedures that are of a nearest-neighbor nature. Depth, after symmetrization, indeed provides the center-outward ordering that is necessary and sufficient to define nearest neighbors. Like all their depth-based competitors, the resulting classifiers are affine-invariant, hence in particular are insensitive to unit changes. Unlike the former, however, the latter achieve Bayes consistency under virtually any absolutely continuous distributions - a concept we call nonparametric consistency, to stress the difference with the stronger universal consistency of the standard $k$NN classifiers. We investigate the finite-sample performances of the proposed classifiers through simulations and show that they outperform affine-invariant nearest-neighbor classifiers obtained through an obvious standardization construction. We illustrate the practical value of our classifiers on two real data examples. Finally, we shortly discuss the possible uses of our depth-based neighbors in other inference problems.Comment: Published at http://dx.doi.org/10.3150/13-BEJ561 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
We propose halfspace depth concepts for scatter, concentration and shape matrices. For scatter matrices, our concept is similar to those from Chen, Gao and Ren (2017) and Zhang (2002). Rather than focusing, as in these earlier works, on deepest scatter matrices, we thoroughly investigate the properties of the proposed depth and of the corresponding depth regions. We do so under minimal assumptions and, in particular, we do not restrict to elliptical distributions nor to absolutely continuous distributions. Interestingly, fully understanding scatter halfspace depth requires considering different geometries/topologies on the space of scatter matrices. We also discuss, in the spirit of Zuo and Serfling (2000), the structural properties a scatter depth should satisfy, and investigate whether or not these are met by scatter halfspace depth. Companion concepts of depth for concentration matrices and shape matrices are also proposed and studied. We show the practical relevance of the depth concepts considered in a real-data example from finance.
Abstract. We introduce a new approach to goodness-of-fit testing in the high dimensional, sparse extended multinomial context. The paper takes a computational information geometric approach, extending classical higher order asymptotic theory. We show why the Wald -equivalently, the Pearson χ 2 and score statistics -are unworkable in this context, but that the deviance has a simple, accurate and tractable sampling distribution even for moderate sample sizes. Issues of uniformity of asymptotic approximations across model space are discussed. A variety of important applications and extensions are noted.
This paper develops a new class of functional depths. A generic member of this class is coined J th order kth moment integrated depth. It is based on the distribution of the cross-sectional halfspace depth of a function in the marginal evaluations (in time) of the random process. Asymptotic properties of the proposed depths are provided: we show that they are uniformly consistent and satisfy an inequality related to the law of the iterated logarithm. Moreover, limiting distributions are derived under mild regularity assumptions. The versatility displayed by the new class of depths makes them particularly amenable for capturing important features of functional distributions. This is illustrated in supervised learning, where we show that the corresponding maximum depth classifiers outperform classical competitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.