Trastuzumab is a FDA-approved drug that has shown clinical efficacy against HER2+ breast cancers and is commonly used in combination with other chemotherapeutics. However, many patients are innately resistant to trastuzumab, or will develop resistance during treatment. Alternative treatments are needed for trastuzumab-resistant patients. Here, we investigate gold nanoparticle-mediated photothermal therapies as a potential alternative treatment for chemotherapy-resistant cancers. Gold nanoshell photothermal therapy destroys the tumor cells using heat, a physical mechanism, which is able to overcome the cellular adaptations that bestow trastuzumab resistance. By adding anti-HER2 to the gold surface of the nanoshells as a targeting modality, we increase the specificity of the nanoshells for HER2+ breast cancer. Silica-gold nanoshells conjugated with anti-HER2 were incubated with both trastuzumab-sensitive and trastuzumab-resistant breast cancer cells. Nanoshell binding was confirmed using two-photon laser scanning microscopy, and the cells were then ablated using a near-infrared laser. We demonstrate the successful targeting and ablation of trastuzumab-resistant cells using anti-HER2-conjugated silica-gold nanoshells and a near-infrared laser. This study suggests potential for applying gold nanoshell-mediated therapy to trastuzumab-resistant breast cancers in vivo.
Yeasts can form multicellular patterns as they expand on agar plates, a phenotype that requires a functional copy of the FLO11 gene. Although the biochemical and molecular requirements for such patterns have been examined, the mechanisms underlying their formation are not entirely clear. Here we develop quantitative methods to accurately characterize the size, shape, and surface patterns of yeast colonies for various combinations of agar and sugar concentrations. We combine these measurements with mathematical and physical models and find that FLO11 gene constrains cells to grow near the agar surface, causing the formation of larger and more irregular colonies that undergo hierarchical wrinkling. Head-to-head competition assays on agar plates indicate that two-dimensional constraint on the expansion of FLO11 wild type (FLO11) cells confers a fitness advantage over FLO11 knockout (flo11Δ) cells on the agar surface.
Obtaining negative margins is critical for breast cancer patients undergoing conservation therapy in order to reduce the reemergence of the original cancer. Currently, breast cancer tumor margins are examined in a pathology lab either while the patient is anesthetized or after the surgical procedure has been terminated. These current methods often result in cancer cells present at the surgical resection margin due to inadequate margin assessment at the point of care. Due to such limitations evident in current diagnoses, tools for increasing the accuracy and speed of tumor margin detection directly in the operating room are still needed. We are exploring the potential of using a nano-biophotonics system to facilitate intraoperative tumor margin assessment ex vivo at the cellular level. By combining bioconjugated silica-based gold nanoshells, which scatter light in the near-infrared, with a portable FDA-approved reflectance confocal microscope, we first validate the use of gold nanoshells as effective reflectance-based imaging probes by evaluating the contrast enhancement of three different HER2-overexpressing cell lines. Additionally, we demonstrate the ability to detect HER2-overexpressing cells in human tissue sections within 5 min of incubation time. This work supports the use of targeted silica-based gold nanoshells as potential real-time molecular probes for HER2-overexpression in human tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.