Profiling driving behavior has become a relevant aspect in fleet management, automotive insurance and eco-driving. Detecting inefficient or aggressive drivers can help reducing fleet degradation, insurance policy cost and fuel consumption. In this paper, we present a Fuzzy-Logic based driver scoring mechanism that uses smartphone sensing data, including accelerometers and GPS. In order to evaluate the proposed mechanism, we have collected traces from a testbed consisting in 20 vehicles equipped with an Android sensing application we have developed to this end. The results show that the proposed sensing variables using smartphones can be merged to provide each driver with a single score.
The proliferation of smartphones and mobile devices embedding different types of sensors sets up a prodigious and distributed sensing platform. In particular, in the last years there has been an increasing necessity to monitor drivers to identify bad driving habits in order to optimize fuel consumption, to reduce CO2 emissions or, indeed, to design new reliable and fair pricing schemes for the insurance market. In this paper, we analyze the driver sensing capacity of smartphones. We propose a mobile tool that makes use of the most common sensors embedded in current smartphones and implement a Fuzzy Inference System that scores the overall driving behavior by combining different fuzzy sensing data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.